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1 Introduction

All-pay contests in which players must exert costly effort or commit resources in an attempt

to win a prize are a fundamental aspect of modern society. Examples of these contests in-

clude R&D contests, academic grant writing, elections, lobbying, and sales among others.

A common feature of these particular examples is that these contests often award several

prizes, one to each of the “best” contestants.1 Furthermore, these prizes are often awarded

deterministically. For example, in an R&D contest, rather than simply being more likely to

go to the better proposals, the prizes are awarded with certainty to the most valuable inno-

vations. Thus, these are examples of multi-prize all-pay auctions. There is a vast literature

studying such contests, and significant divergence of behavior from theoretical predictions

has been observed in experiments (Dechenaux et al., 2014). Despite the prominence of the

aforementioned contests, however, there have not been any experimental tests of behavior in

multi-prize all-pay auctions. In this paper, we provide such a test, varying both the number

of players and number of prizes in an all-pay auction. In doing so, we are able to properly

observe and test a novel explanation for the disparity between theory and behavior: the

scarcity of the prize, that is, the proportion of prizes to players. Our experiments reveal that

the scarcity of the prize is largely responsible for the amount of overbidding in contests, which

is the most commonly observed behavioral phenomenon in previous experimental studies. In

particular, we find that when the proportion of prizes to players is 1 in 3, there is significant

overbidding, while there is significant underbidding when this proportion is 2 in 3. These

results further demonstrate that overbidding is not restricted to single prize contests.

The theoretical setting on which we focus is that of an all-pay auction with multiple

prizes, complete information, and a continuous strategy space. Baye et al. (1996) and Siegel

1For example, funding agencies like NSF typically make more than one award and local elections such as
school boards often have more than one winner. Multiple prizes are also common in the world of sports. For
example, golf tournaments award prize money to all golfers who “make the cut” and the Olympics awards
medals to the top three performers.
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(2009) describe Nash equilibrium predictions for these auctions with one or more prizes. All

equilibria are in mixed strategies, and multiple equilibria are common for many specifications

of these auctions. While the existence of multiple equilibria typically leads to difficulty in

comparing the theoretical predictions with observed predictions, these papers show that

there is a revenue equivalence across all equilibria. That is, the average revenue generated

by the auction is equal to the total prize value. Moreover, when players are identical, there is

only one symmetric equilibrium. These facts provide two avenues via which we may compare

the behavior of our subjects with the existing theory.

Our experiments are designed to compare bidding behavior in a single prize all-pay auc-

tion with behavior in multiple prize all-pay auctions with the same and with less prize

scarcity. Our goal is to examine how closely bidding behavior matches with Nash equilib-

rium predictions and also to determine whether the well-known pattern of over-dissipation

of rents persists as the number of prizes increases. We consider two ways of modifying the

number of prizes. First, we increase the number of prizes while holding the number of play-

ers and the total prize value constant, thus decreasing the scarcity of the prize. Second, we

increase both the number of prizes and the number of players but keeping the proportion

constant, thus holding the scarcity of the prize constant. While we have no a priori hy-

pothesis about whether multiple prizes will reduce over-dissipation, this treatment allows us

to test whether over-bidding is intrinsically tied to the single prize format in the previous

literature or whether it persists with multiple prizes.

A single prize all-pay auction with three bidders serves as our baseline treatment. Our

results from these experiments confirm that over-dissipation is prevalent in single prize all-

pay auctions. We also conducted experiments with three subjects bidding for two prizes,

each of half the value of the baseline to maintain revenue equivalence with the baseline

treatment. We find that with a reduction in prize scarcity, the over-dissipation is eliminated

and average bids are lower than the Nash equilibrium predictions. Finally, we conducted
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experiments with six subjects bidding for two prizes and find that over-dissipation occurs

to a similar extent as in the baseline. Our primary conclusion is that over-dissipation is

sensitive to the competitiveness of the auction and the scarcity of the prize. When the prize

to bidder ratio is sufficiently high, over-dissipation is eliminated.

Beginning with Davis and Reilly (1998) and Potters et al. (1998), there have been a

number of experiments conducted to study bidding behavior in all-pay contests with complete

information. One common feature of all of the experiments in this literature is that the

auctions only award a single prize to the highest bidder. Auctions with complete information

and multiple prizes have been studied in experiments with Tullock contests (for example, see

Sheremeta, 2011 and Shupp et al., 2013), but not in an all-pay auction framework where the

highest bidders win for sure.2 The all-pay auction framework is preferable for situations in

which, given the actions of the other players, an agent can identify a best response strategy

that wins for sure. For example, consider the allocation of concert or sports tickets to the

fans who are closest to the front of the line. When concert tickets go on sale, if everyone

values the concert ticket and their time equally, then the best response, given everyone else’s

arrival time, is to arrive at the line just before the k-th other person, assuming there are k

tickets.3

Despite minor differences in experimental design, one pervasive feature of the majority of

complete information all-pay auction experiments is over-dissipation of rents, meaning the

revenue of the auction exceeds equilibrium predictions (Dechenaux et al., 2014). For exam-

ple, Davis and Reilly (1998), Gneezy and Smorodinsky (2006), Ernst and Thoni (2013), and

Lugovskyy et al. (2010) all report overbidding in some or all of their treatments.4 Overbid-

2See Barut et al. (2002) for a study with multiple prize all-pay auctions with incomplete information.
3On the other hand, a Tullock contest is preferable if there is an element of luck or uncertainty regarding

the outcome. For example, most sports competitions involve an element of chance in addition to effort and
talent and so are better modeled as Tullock contest. In war, while having a greater number of troops can
increase the odds of winning, it is not necessarily the case that having more troops will ensure victory.

4For additional experiments on complete information all-pay auctions, see Klose and Kovenock (2015),
Fehr and Schmid (2014), and Chen et al. (2015).
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ding has also been reported in all-pay auctions with incomplete information (Barut et al.,

2002 and Noussair and Silver, 2006) and in Tullock contests (see Sheremeta, 2013 for a

review).

It is interesting to note that in two instances of all-pay auctions with two bidders compet-

ing for one prize, overbidding has not been observed (Potters et al., 1998 and one treatment

of Ernst and Thoni, 2013). In the experiments that do find overbidding, there are three

or more bidders competing for the prize. These findings lead to a hypothesis that bidding

behavior is sensitive to prize scarcity - that more people competing for the prize leads to

greater over-dissipation. Our findings suggest that this hypothesis is in fact true.

The remainder of the paper proceeds as follows. In the next section, we review the theory

of all-pay auctions and describe our experimental design. In Section 3, we present the results

of our analysis of the experiments. Section 4 concludes.

2 Theory and Experimental Design

There are n players competing for one of m < n identical prizes with common value R. All

players i simultaneously submit a bid bi, then prizes are awarded to the m players with the

highest bids. Ties are resolved by distributing the contested prizes between the tied bidders

uniformly at random. Given the profile of bids b = (b1, b2, ..., bn), let #Hi(b) and #Mi(b)

denote the number of players j 6= i such that bj > bi and bj = bi, respectively. Then the

probability that player i receives a prize Pi(b) is defined by

Pi(b) =


1, if bi > bj for at least n−m players j 6= i,

0, if bi < bj for at least m players j 6= i,

m−#Hi(b)
#Mi(b)

, otherwise.
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Players in this contest must pay their bid regardless of whether they win a prize. The

expected utility of player i is thus defined by ui(b) = Pi(b)R− bi.

All equilibria of the game described above are in mixed strategies. To see why, note

that a player’s best response is always to bid just above the m-th highest bid of the other

players unless the m-th highest bid is the prize value in which case the best response is zero.

Thus, no equilibrium in pure strategies exists. Baye et al. (1996) show that, when m = 1,

all equilibria are such that the expected auction revenue is equal to the prize value. Siegel

(2009) extends this result to m > 1, showing that in general the expected auction revenue

is equal to the total prize value mR.

Although there can be multiple mixed strategy equilibria for any specification of the

game, the “revenue equivalence” means that we can compare the behavior in our experi-

ments with the predicted Nash equilibria by examining the auction revenue. With this in

mind, we selected three variations of the all-pay auction, all of which have a unique sym-

metric equilibrium and multiple asymmetric equilibria. The existence of a unique symmetric

equilibrium provides a natural benchmark against which we may compare the distribution

of bids. The treatments differed in the number of bidders and the number of prizes. The

first treatment, denoted N3P1, involved groups of three bidders competing for a single prize.

The second treatment, denoted N3P2, had three bidders competing for two prizes. The third

treatment, denoted N6P2, had six bidders competing for two prizes. We adjusted the prize

value across treatments to hold the expected bid constant across all equilibria in all treat-

ments. This design allows us to compare bidding as the number of prizes increases holding

the number of players constant (N3P1 vs. N3P2 ) and to compare bidding as the number of

prizes increases holding the the scarcity of the prize constant (N3P1 vs. N6P2 ).

Table 1 shows a summary of the three treatments along with average bids and revenue

for each treatment. We conducted three sessions for each treatment. For the three player

treatments, sessions had either 12, 15 or 18 subjects. The sessions for N6P2 had 18 subjects
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Table 1: Summary of Treatments

Treatment n m R Number of
subjects

Average
Bid

Average
Revenue

N3P1 3 1 800 39 340.73 1022.18
N3P2 3 2 400 45 205.29 615.86
N6P2 6 2 800 54 354.16 2124.99

per session. The average bid for all Nash equilibria for all three treatments is 266.67. Ex-

pected revenue is equal to the total prize: 800 for the three player treatments and 1600 for

N6P2. Actual average bids and revenue in the experiments are shown in Table 1.

From prior experimental work, we expect to see overbidding in the one prize auction

(N3P1 ) relative to the Nash equilibrium. We consider it an open question whether the

overbidding will exist when we examine auctions with two prizes, as multiple prize all-pay

auctions with complete information have not been studied in the literature.

Although the equilibrium average bid is held constant across all three treatments and all

equilibria, there are noteworthy differences in the equilibrium bid distributions. As shown

in Figure 2, the symmetric equilibrium distributions for N3P1 and N6P2 have most of

the mass in low bids close to 0. By contrast, the symmetric equilibrium distribution for

N3P2 has most of the mass in high bids close to the prize value. In our analysis below, we

will test whether bidding is consistent with the symmetric equilibrium. Further, when the

distribution of bids is not consistent with the symmetric equilibrium, we will examine how

the deviations from equilibrium lead to the observed over- or under-bidding.

The experiment proceeded as follows. Subjects participated in one of the three treat-

ments described above (a between-subjects design).5 Subjects received printed copies of the

instructions, and the instructions were read aloud. After reading the instructions, subjects

5Prior to the auction experiment, all subjects made a series of 10 choices between two gambles following
the procedure from Holt and Laury (2002). One of the 10 choices was selected at random to be payoff
relevant. Subjects were not informed of earnings from this part of the experiment until the end of the
experiment.
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completed a quiz that presented a hypothetical set of bids and asked subjects to identify

the winner(s) and to state every player’s earnings. Subjects could not proceed until they

answered all questions correctly. In the event of an error, one of the session proctors helped

explain the error to the subject. Following successful completion of the quiz, subjects played

40 rounds of the experiment. Since we are interested in understanding behavior in a one-shot

auction, subjects were randomly re-matched in every round (a stranger design) in order to

reduce the feasibility of tacit collusion.

The experiment allowed each subject to enter a bid of any non-negative real number

to two decimal places. A concern in the prior literature involves biases from imposing a

maximum bid (Dechenaux et al., 2014). To alleviate this concern, the instructions did not

mention any maximum bid. In practice, the experiment software imposed a maximum bid

of 2000 tokens which is well above the prize value in all treatments.

All payments were expressed to subjects in experimental tokens, where 100 tokens was

equal to $1. Subjects were informed that they would receive a 2000 token endowment in

addition to whatever they won or lost during the all-pay auction. They were also informed

that we would randomly select 5 of the 40 auction rounds to pay subjects and that earnings

or losses from those 5 rounds would be totaled and added to the 2000 token endowment

to determine their earnings. The expected earnings in all equilibria are 0 each period, so

predicted earnings for this part of the experiment are 2000 tokens, or $20.6

The experiment took about one hour, and subjects were paid in cash following completion

of the experiment. All subjects were undergraduate students at California Polytechnic State

University in San Luis Obispo, CA. The experiments were run using the z-Tree software

(Fischbacher, 2007). The full instructions provided to the subjects are available from the

6It was possible that losses in the five chosen rounds could exceed the 2000 token endowment, leading to a
net loss in the experiment. Subjects were informed that no one would actually lose money in the experiment.
In practice, only 2 of the 138 subjects had negative total earnings and they were only slightly negative, so
we are not concerned that the truncated losses affected bidding behavior.
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authors.

3 Results

In this section we present two sets of empirical results. The first results pertain to analysis of

aggregate bidding behavior in the experiments. The second set of results address individual

subject bidding behavior.

3.1 Aggregate Results

Figure 1 shows histograms of the auction revenue for each of the three treatments with the

solid red line showing the total prize value and the curve showing the predicted distribution

of auction revenue for each treatment in the symmetric equilibrium. The red line showing

the prize value is also the expected revenue in all equilibria: 800 in N3P1 and N3P2 and

1600 in N6P2. Over-dissipation is present in a large fraction of rounds in the N3P1 (62% of

rounds) and N6P2 (71%) treatments while there is under-bidding in N3P2 where only 21%

of rounds had revenue over 800 tokens.

To facilitate comparisons of aggregate bidding across treatments, we construct a variable,

denoted θ, that is equal to the average auction revenue in a session divided by the total prize

value for that treatment. So, θ = 1 when auction revenue is equal to the total prize value and

is greater than 1 when there is over-dissipation. We have three independent observations

for each treatment (one per session) since we randomly re-match subjects every round.

Comparing the level of over-dissipation in N3P2 to either N3P1 or N6P2, we note that all

three values of θ in N3P2 are lower than all three values in N3P1 and N6P2. As a result,

a Wilcoxon rank sum test (or other similar nonparametric tests) has the minimum possible

p-value of 0.1 in both cases. This confirms, to the greatest extent possible with our data, that

overall bidding is lower in N3P2 than either of the other treatments. Based on a Wilcoxon
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Figure 1: Auction Revenue
The histogram shows the frequency of revenue outcomes in a treatment. The vertical red line
shows the equilibrium expected revenue. The black curve shows the predicted frequency of
revenue outcomes in the symmetric equilibrium.
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rank sum test, we cannot reject the null hypothesis that the extent of over-dissipation is the

same in N3P1 and N6P2.

We follow Lugovskyy et al. (2010) and Barut et al. (2002) in constructing a regression

equation that allows for a convergence process in bidding behavior over the course of the

experiment. This model assumes that different sessions may have different levels of over-

dissipation at the start but that all sessions in the same treatment converge to the same level

of over-dissipation. This regression allows us to compare the overall level of over-dissipation

across treatments at the end of the experiment. The regression equation is:

θst =
9∑

s=1

βsDs
1

t
+ γN3P1DN3P1

t− 1

t
+ γN3P2DN3P2

t− 1

t
+ γN6P2DN6P2

t− 1

t
+ εst (1)

In the above equation, the Ds are dummy variables for each of the 9 sessions (3 for each

treatment). DN3P1, DN3P2, and DN6P2 are dummy variables for the three treatments. t

represents the period, ranging from 1 to 40, and εst is a random normal error term. This

regression estimates the starting point (βs) and ending point (γi) of a convergence process

where each session has its own starting point but all sessions in a given treatment share a

common end point.

Table 2 shows the regression results with statistical significance corresponding to a null

hypothesis that each coefficient equals 1 (since θ = 1 is the equilibrium prediction in all

equilibria) instead of 0. In both N3P1 and N6P2, all sessions begin with overbidding. The

extent of overbidding declines by the end of the session but is still significant. In contrast, by

the end of the sessions in N3P2, we observe statistically significant underbidding relative to

the equilibrium prediction. Comparing the treatments to each other, γN3P2 is significantly

lower than the other two treatments at a 1% level and γN6P2 is slightly greater than γN3P1,

significant at 5% level.
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Table 2: Convergence of Aggregate Dissipation Over Time

Dependent Variable θ
β1, β2, β3 2.212*** 1.284 2.065***

(0.189) (0.210) (0.210)
β4, β5, β6 0.884 0.711* 0.287***

(0.209) (0.172) (0.188)
β7, β8, β9 1.561** 1.815*** 1.429*

(0.243) (0.243) (0.243)
γN3P1 1.205***

(0.0270)
γN3P2 0.788***

(0.0251)
γN6P2 1.295***

(0.0325)
Observations 1480
R-sq 0.823
Standard errors in parentheses
Coefficient is significantly different than 1:
*** p<0.01, ** p<0.05, * p<0.1
N3P1 includes sessions 1, 2, and 3.
N3P2 includes sessions 4, 5, and 6.
N6P2 includes sessions 7, 8, and 9.
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To summarize our results on aggregate bidding, we confirm results from prior studies

that there is over-dissipation in a one prize three bidder all-pay auction. We further show

that similar amounts of over-dissipation occur when the number of prizes and bidders are

increased proportionally. Most noteworthy is that we instead observe under-dissipation when

the number of prizes is increased, holding the number of players constant.

3.2 Individual Results

Figures 2 and 3 show a histogram of bidding behavior for each of the three treatments for

all rounds and for the final 10 rounds, respectively. The solid red line shows the average

bid in all equilibria, equal to 266.67 in all three treatments. The curve shows the expected

distribution of bids in the symmetric equilibrium for each treatment. Similar to what has

been found in the prior literature (see Dechenaux et al., 2014), we observe bimodal bidding

in the one prize treatment with many bids at or close to 0 and many bids close to the prize

value. The histograms shed some light into the causes of overbidding in the N3P1 and N6P2

treatments. In both cases, it is the large number of bids close to the prize value (over 700

tokens) that is the cause of the overbidding phenomenon.

As a further illustration, consider the number of bids within 5% of the prize value.

In N3P1 and N6P2, there were 266 (17%) and 559 (26%) bids greater than 760 tokens,

respectively. In the symmetric equilibrium, we expect only 3% of bids in N3P1 to be that

high and only 7% of bids in N6P2. By contrast, consider the N3P2 treatment. Here the

symmetric equilibrium puts greater mass on bids near the prize value relative to the other

treatments. Based on equilibrium predictions, we would expect 22% of bids to be over 380

tokens. Instead, we observe only 85 (5%) bids that high.

Figures 4 and 5 show the empirical CDF for each of the three treatments for all rounds

and for the last 10 rounds, respectively. The solid line in each panel is the symmetric

equilibrium distribution. These figures corroborates the pattern of overbidding in N3P1 and
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Figure 2: Individual Bidding Behavior - All Periods
The histogram shows the frequency of bids in a treatment. The vertical red line shows the
equilibrium average bid, 266.67 in all treatments. The black curve shows the predicted fre-
quency of bids in the symmetric equilibrium.
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The histogram shows the frequency of bids in a treatment. The vertical red line shows the
equilibrium average bid, 266.67 in all treatments. The black curve shows the predicted fre-
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Figure 4: CDF of Actual Bids and Symmetric Equilibrium Bids - All Periods

N6P2 observed in Figures 2 and 3, that it is the result of too many bids close to the prize

value. These figures also also show that there are too many zero bids in these treatments,

though this behavior may be induced by the large number of bids near the prize value. We

also note that there is a small movement towards the equilibrium distribution when looking

just at the final 10 rounds, but for the most part, the distribution of bids is similar in both

figures.

Figure 6 shows box plots of each individual’s distribution of bids, organized by treatment

and session. At the individual level, we note that most players in N3P1 and N6P2 mix over

almost the entire range of bids between 0 and the prize value. 72% of subjects in N3P1 and

81% of subjects in N6P2 have at least one bid below 40 and at least one bid above 760. In

a few instances, subjects bid greater than the prize values (individual over-dissipation). In

N3P1, 4 out of 39 subjects bid over the prize value at least once and this extreme overbidding
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Figure 5: CDF of Actual Bids and Symmetric Equilibrium Bids - Final 10 Periods
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occurs in 15 out of 1560 choice opportunities. In N6P2, 8 out of 54 subjects bid over the prize

value at least once and this extreme bidding occurs in 48 out of 2160 choice opportunities.

No subjects ever bid above the prize value in N3P2.

Very few subjects make the same bids throughout the session. No subjects in N3P1 and

N3P2 have all bids within a 20 tokens range. In N6P2, there are four subjects who choose

not to participate, bidding less than one token in all 40 periods. These subjects guarantee

themselves a payoff of $20.00, exactly equal to the equilibrium expected payoff. Given the

overbidding observed in N6P2, these subjects’ earnings are well above the average payoff

($15.11) for their treatment.

Figure 7 shows box plots using only the final 10 rounds of the experiment. It is interesting

to note that although the overall distribution of bids from all rounds in Figure 3 is similar to

that from the final 10 rounds in Figure 2, at the individual level there are notable differences

in bidding between the beginning and end of the experiment. In the final 10 rounds, there

are many subjects who make close to the same bid in each round. The percentage of subjects

who make all bids in the last 10 rounds within a 20 token range is 15%, 9%, and 26% in

N3P1, N3P2, and N6P2, respectively. Some of these subjects focus on bids close to the

prize value, some have opted out and bid close to zero, and a few bid in the middle. The

remainder of subjects continue to mix over wide ranges of bids.

We use a Kolmogorov-Smirnov test to compare the distribution of bids in each treatment

to the symmetric equilibrium under the assumption that individual bids are independent

across rounds (as would be true if subjects played a mixed strategy equilibrium). In all

cases, we reject the null hypothesis at a 1% significance level that subjects play the symmetric

equilibrium strategy. This is true when looking at all data or the final 10 rounds.

The differences in bidding behavior translate into different earnings across the three

treatments. Since each subject was given a $20.00 endowment and expected earnings in

the all-pay auction are zero in all equiibria, we expect average earnings to be $20.00. By

18



1 3 5 7 9 11 13 15

0
20

0
40

0
60

0
80

0
10

00

Subject

B
id

1 2 3 4 5 6 7 8 9 11
0

20
0

40
0

60
0

80
0

10
00

Subject

B
id

1 2 3 4 5 6 7 8 9 11

0
20

0
40

0
60

0
80

0
10

00

Subject

B
id

1 2 3 4 5 6 7 8 9 11

0
10

0
20

0
30

0
40

0
50

0

Subject

B
id

1 3 5 7 9 11 14 17

0
10

0
20

0
30

0
40

0
50

0

Subject

B
id

1 3 5 7 9 11 13 15

0
10

0
20

0
30

0
40

0
50

0

Subject

B
id

1 3 5 7 9 11 14 17

0
20

0
40

0
60

0
80

0
10

00

Subject

B
id

1 3 5 7 9 11 14 17

0
20

0
40

0
60

0
80

0
10

00

Subject

B
id

1 3 5 7 9 11 14 17

0
20

0
40

0
60

0
80

0
10

00

Subject

B
id
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overbidding, subjects in N3P1 and N6P2 earned considerably less money than those in

N3P2. The average earnings were $15.88 and $15.11, respectively, in N3P1 and N6P2, while

in N3P2, average earnings were $23.36.

4 Conclusion

Many examples of all-pay auctions actually have more than one prize awarded, yet prior

experiments have focused on the one prize case. We ran experiments on all-pay auctions

with complete information where we varied the number of prizes and players to examine how

multiple prizes affects bidding. We find that decreasing the scarcity of the prize dramatically

lowers the average bid and eliminates the over-dissipation phenomenon found in many prior

studies. On the other hand, we find that increasing the number of prizes while holding

scarcity constant has little effect on aggregate bidding. We conclude that over-dissipation is

linked to prize scarcity; if subjects perceive they have a high enough chance to win a prize,

then over-bidding disappears.

In our game, the number of players is exogenous. In a real world scenario in which

the number of players is fixed, our results suggest that increasing the number of prizes will

reduce aggregate bids. On the other hand, in some real world cases, the number of players

is determined endogenously. In this case, if the presence of multiple prizes attracts more

bidders, then over-dissipation is likely to persist.
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