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Abstract

There is evidence that bidders fall prey to the winner’s curse because of mistakes

in hypothetical thinking. I provide a lab experiment with two stages to investigate

this relationship. In stage I the subjects participate in a non-standard common

value auction called the wallet game in which a näıve bidding strategy can lead to

both: winner’s curse and loser’s curse. In stage II the subjects in the treatment

group learn whether their initial bid was the winning bid or not with the possibility

to change this bid. In this sense the bidders face the same decision problems as

in stage I again but the need for hypothetical thinking is reduced in stage II. The

overall pattern of the data suggests that the problem of winner’s and loser’s curse

can be weakened by giving the subjects ex ante feedback about their bid, when both

are regarded separately.
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1 Introduction

Imagine the following scenario: Several bidders compete for a particular oil field with

an unknown but common value in a second-price sealed bid auction. After all bidders

submitted their bids the auctioneer looks through the bids and searches for the winning

bid. Before the auctioneer announces the result officially she tells the winning bidder in

private that he is the one who submitted the highest bid. She gives him a chance to

submit a new bid if he would like to. When the winning bidder receives this information

he might update his valuation for the oil field and come to the conclusion that the true

value is lower than his estimate because he is the one who submitted the highest bid.

Obviously he should have taken this into account beforehand. The same behavior can

be found in the famous Groucho Marx quote: “Please accept my resignation. I don’t

want to belong to any club that will accept me as a member”, which indicates a failure

in hypothetical thinking resulting in the winner’s curse.

I show in an experimental setup that bidders in a common value auction are more

likely to avoid the winner’s curse (irrational overbidding) and the loser’s curse (irrational

underbidding) when they are informed whether their bid is the winning bid or not - an

information bidders receive usually only at the very end of an auction. The overall results

suggest that a substantial part of irrational bidding behavior in common value auctions

can be explained by mistakes in hypothetical thinking. At the same time there is also a

downside of receiving information about one’s bid since the subjects differ only imperfectly

between situations in which decreasing (increasing) a bid is rational and those in which it

is not. Additionally my findings cast doubts on the accuracy of belief-based models like

cursed equilibrium (Eyster and Rabin, 2005) in explaining the winner’s curse.

The winner’s curse is a phenomena whose existence is empirically well documented

in field and laboratory studies. It describes a situation, in an auction context, in which

individuals systematically tend to overbid, relative to the true value of an object. Thus

the winner of an auction might be the actual loser, because he payed a price that exceeds

the value of the auctioned good. Empirically this phenomena was first described by

Capen et al. (1971). They showed that many oil companies in the 1960’s and 1970’s had

to report a drop in profit rates, which they ascribed to irrational bidding behavior like

systematic overbidding in auctions for drilling rights. Later also experimental evidence

for this phenomena was found in a large number of lab studies (see for example Bazerman

and Samuelson, 1983; Charness and Levin, 2009; Ivanov et al., 2010; Brocas et al., 2017).

Most of these studies conclude that the origins of the winner’s curse can be seen in

bounded rational behavior of the agents. In this regard there are two main classes of

theories: Explanations concerning errors in conditional reasoning on future events and

explanations concerning the belief formation of individuals. Furthermore there are also

some psychological arguments which see the reason for the winner’s curse in emotional

(Astor et al., 2013) or social (Van den Bos et al., 2008) aspects of winning. In the economic

literature there is an ongoing debate whether belief-based models like cursed equilibrium
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and level-k model (Eyster and Rabin, 2005; Crawford and Iriberri, 2007)1 or approaches

concerning contingent reasoning on hypothetical future events (Charness and Levin, 2009;

Ivanov et al., 2010; Esponda and Vespa, 2014) are more accurate to explain the winner’s

curse.

My experiment takes a closer look on the issue of contingent reasoning by providing an

auction game in which the bidders learn whether a bid which was considered as optimal

ex ante is the winning bid or not (but without learning their payoff yet) and with the

possibility to change this bid. This treatment intervention is similar to the sequential

treatment in Esponda and Vespa (2014) where participants in an election learned whether

their vote was pivotal or not before they had to cast a vote.

Contingent reasoning refers to the ability of thinking through hypothetical scenarios.

There is evidence that people have difficulties to engage in this cognitive task. Whereas

this is well documented in the psychological literature (see for example Evans et al., 2007;

Nickerson, 2015; Singmann et al., 2016), economists devoted little attention to this issue

for a long time. However, in the more recent economic literature this topic appears more

and more frequently (see for example Charness and Levin, 2009; Louis, 2013; Esponda

and Vespa, 2014; Koch and Penczynski, 2014; Li, 2015; Ngangoue and Weizsacker, 2015;

Levin et al., 2016; Esponda and Vespa, 2016).

The concept of contingent reasoning has still received very little formal treatment in the

economic literature. The first one who provided a formal definition of this mental process

is Li (2015) by introducing the concept of obviously strategy-proof (OSP) mechanisms

which can be seen as an extension of strategy-proof mechanisms. By definition of his

paper a mechanism is OSP if and only if an optimal strategy can be found without the

necessity of performing contingent reasoning. An OSP mechanism requires an equilibrium

in obviously dominant strategies. A strategy is obviously dominant if such a cognitively

limited agent can recognize a strategy as weakly dominant. More formally:

A strategy Si is obviously dominant if, for any deviating strategy S ′i, starting

from any earliest information set where Si and S ′i diverge, the best possible

outcome from S ′i is no better than the worst possible outcome from Si. (Li,

2015)

Li (2015) showed that participants in private value ascending bid auctions perform

better than in theoretically equivalent second-price auctions what he ascribed to the fact

that the first ones are OSP while the second ones are only strategy-proof. However, in

non-trivial common value auctions there is normally no weakly dominant strategy hence

1Both models fall into the category of belief-based models, since the cause manifesting in the winner’s
curse is seen in the belief formation of individuals. The general assumptions of the Bayesian Nash
Equilibrium are still fulfilled in the sense that subjects best-respond to beliefs but the assumption about
the consistency of beliefs is relaxed. In the cursed equilibrium the degree of cursedness is given by
χ ∈ [0, 1], i.e. the belief that with some probability χ the actions of the opponents do not depend on
their types. A value of 0 is equivalent to the usual Bayesian Nash Equilibrium, whereas a value of 1
corresponds to a setting in which the players do not assume any correlation between the actions of a
player and his type which is also denoted as the fully cursed equilibrium.
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they are not even strategy-proof no matter whether they are conducted as ascending bid

or second-price auction. A crucial point of the winner’s curse is that it appears typically

in common value auctions, because of the inherent adverse selection issue, but not in

private value auctions and the concept of OSP mechanisms cannot explain why subjects

behave differently in these two kinds of auctions. In this sense the concept of OSP is only

partly useful for explaining why bidders fall prey to the winner’s curse.2 However, it can

be a powerful tool to explain why people make less mistakes in ascending bid auctions

compared to sealed bid auctions when the valuations are private.

The experiment presented in this paper is a second-price sealed bid auction, similar to

the wallet game proposed by Klemperer (1998) and the model used in Avery and Kagel

(1997) which is a non-standard common value auction. The basic idea of the game is the

following: Two players, indexed by i = 1, 2, receive a private iid signal xi drawn from

some commonly known distribution. In a second-price sealed bid auction they bid for an

object worth v = x1 + x2. A more detailed and formal description of this game will be

provided in Section 3. The reasons for choosing this special form are the following: First,

it is simple enough, such that it can easily be understood by inexperienced subjects while

it still represents a common value auction context and second, the same cognitive mistakes

can lead to both over- and underbidding, relative to the symmetric equilibrium strategy

(i.e. there can be both a winner’s and a loser’s curse (see also Holt and Sherman, 1994)).

The latter point is suitable to control for psychological explanations, like emotional factors

of winning. Henceforth a winner’s curse can be understood as winning an auction but

with a negative payoff and a loser’s curse as losing an auction but the bidder could have

won with a positive payoff.

My experiment consists of two stages. In stage I the subjects participate in the wallet

game against a random opponent. In stage II the subjects play the same auctions again

against the decisions of the former opponent but this time the subjects in the treatment

group are informed whether their initial bid was the winning bid or not. This is a dynamic

treatment intervention since the bidders receive information about some realized event

before they have to come up with a bid.3 Apart from knowing whether a certain bid is

the winning or losing bid the subjects face exactly the same decision problem as in stage I

if we abstract from social preferences.4 It is important to stress that the treatment

intervention does not lead to a complete elimination of contingent reasoning in the sense

of OSP mechanisms, since even with knowing whether a certain bid is the winning (or

losing) bid there are still many more contingencies left and the game is still not solvable

in weakly dominant strategies, hence it is not even strategy-proof. In this sense my

information treatment reveals in fact only some contingency for the bidder but a crucial

one for a cognitively limited agent.

2In general Li’s definition of contingent reasoning is very strong and according to his definition even
a simple prisoner’s dilemma requires contingent reasoning although it is solvable in dominant strategies.

3See also Esponda and Vespa (2016) for a distinction between static and dynamic choice situations.
4Since the subjects do not directly interact with their former opponents in stage II but only play against

their decisions, the payoff of the respective opponent is not affected anymore by the own decisions.
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The aim of this paper is not to come up with a generalized formal theory of contingent

reasoning but to look at one crucial aspect of it in an experimental setup. My contri-

bution to the current literature is to provide an experiment in which the requirements

for contingent reasoning concerning winning or losing are manipulated in a real auction

context. To the best of my knowledge, none of the recent approaches provide a framework

with a dynamic treatment intervention in a sealed bid auction.5

Additionally the effects of my treatment intervention can be clearly attributed to

mistakes in hypothetical thinking and cannot be explained by cursed equilibrium since a

crucial assumption of these belief-based models is that by definition no (or only a partly)

correlation between the other players’ actions and types is assumed. Hence for a “cursed”

bidder the information whether his bid is higher or lower than the bid of the opponent

does not provide him further information which would be relevant for updating his bid.

Finally I am making use of a game that includes both, the risk of a winner’s curse

and a loser’s curse, to control for psychological explanations and to check whether bid

shading after the treatment intervention is due to proper Bayesian updating or just a rule

of thumb. An advantage of my design is that bid shading is only useful for low signals

but not for high signals. In this sense the bidders have to differentiate between those two

kinds of signals.

This paper is organized as follows. Section 2 will provide an overview about the current

literature concerning the winner’s curse and hypothetical thinking. Section 3 will present

the underlying theoretical model for the experiment. Section 4 presents the experimental

design. Section 5 presents the results of the experiment. Section 6 discusses the results

and concludes the paper.

2 Literature review

There is a large body of experimental literature related to the winner’s curse. Some of the

most influential experimental publications concerning the winner’s curse and hypothetical

thinking are presented in the following part. At the same time I want to point out how

my experiment can complement the existing literature in a meaningful way.

Esponda and Vespa (2014) created a common value voting experiment where a sub-

ject interacts together with two computers. The main task for the subject was to submit

a vote for a ball which was either red or blue. Since the vote of the subject was only

relevant when the ball was blue, the optimal choice for the subject was always to vote for

blue. To distinguish between hypothetical thinking and information extraction problems

Esponda and Vespa (2014) conducted a simultaneous voting treatment and a sequential

5So for example the experiment by Charness and Levin (2009) is rather a single decision maker problem
in an adverse selection environment, the experiment conducted by Esponda and Vespa (2014) eliminates
the requirements for hypothetical thinking, but in a voting game and in the experiments by Koch and
Penczynski (2014) and Levin et al. (2016) the treatment interventions are still static ones in the sense
that the bidders do not receive information about a realized event which was hypothetical ex ante.
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voting treatment with the difference that the player in the sequential form was able to

see the decisions of the computers before he had to make his choice. Esponda and Vespa

(2014) showed that subjects in the sequential form made significantly less errors compared

to the simultaneous form. They concluded that most of the subjects are in fact able to

correctly extract information from the computers’ actions, but that they have problems

to think in hypothetical situations (here: being the pivotal voter). Similarly Ngangoue

and Weizsacker (2015) found in a lab experiment that traders in a financial market set-

ting perform better in a sequential trading mechanism where no Bayesian updating on

hypothetical events was required.

In a second study Esponda and Vespa (2016) analyzed further classical economic

anomalies and games like Ellsberg and Allais paradoxes, second-price auctions and elec-

tions focusing on the “Sure-Thing Principle” which was first pointed out by Savage (1972).

The authors showed that even nudging the subjects with the issue of hypothetical thinking

had a significant effect on their behavior.

Charness and Levin (2009) conducted an experiment constructed as a simple individual

choice problem similar to an acquiring a company game which is based on a lemon market

(Akerlof, 1970) to investigate the driving mechanisms behind the winner’s curse. The

results of their paper revealed that most of the subjects systematically overbid even though

the strategy of the computerized seller was known and hence there was no need for the

subjects to form beliefs about his behavior. This pattern was reduced in a setting, where

the bidding task was transformed into a set of simple lotteries with no requirement of

thinking in hypothetical situations. However, transforming the initial game into a simple

lottery task changes the whole structure of the game and so it remains difficult to extract

a causal effect of hypothetical thinking.

Ivanov et al. (2010) used a similar approach as Charness and Levin (2009) but they

conducted their experiment in a real auction context using the maximal game.6 The aim

of their experiment was not to look on the effect of contingent reasoning but rather to

disprove that the winner’s curse is driven by inconsistent beliefs. Ivanov et al. (2010)

observed significant overbidding, which was not reduced in a modified setting of the

maximal game where belief-based models, like cursed equilibrium, had few explanatory

power. However, Costa-Gomes and Shimoji (2015) criticized that Ivanov et al. (2010)

misused some of the game theoretical concepts arguing that some of their findings can

indeed be explained by belief-based models. Similarly, Camerer et al. (2016) argued that

the observed behavior of the subjects in Ivanov et al. (2010) can be explained by belief-

based models if they are combined with a quantal response model. Under this extension

the assumption of perfect best-reply behavior in cursed equilibrium and level-k model is

6Ivanov et al. (2010) criticized that the acquiring a company game used in Charness and Levin (2009)
basically represents a lemon market (Akerlof, 1970) and not a common value auction. So it seems to be
problematic to extend the findings from their experiment to common value auctions in general. They also
claimed that it can make a difference whether a subject plays against other people or against a computer.
In fact, Ivanov et al. (2010) also used a computer treatment, but in their case the computer mimicked
the subject’s own past strategy.
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relaxed and stochastic choices are allowed. They showed that this extended model fits

very well to the data of Ivanov et al. (2010). Contrary to Costa-Gomes and Shimoji

(2015), Camerer et al. (2016) also believe that, if the perfect best-reply assumption of

cursed equilibrium and level-k model is maintained, they are very bad in predicting the

behavior in maximal value games.

Koch and Penczynski (2014) conducted an auction game similar to the one in Kagel

and Levin (1986) to investigate how explanations concerning contingent reasoning and

belief-based models interact.7 They used a transformed version of this game with no

private but only common information to identify the effect of contingent reasoning on the

bidding behavior of the subjects.8 The authors claimed that there is no requirement to

think in hypothetical situations in the transformed game. In the sense of OSP mechanisms

this is not true and even in a more psychological definition of contingent reasoning this

remains questionable since in their transformed model the value of the object is not

deterministic but it depends stochastically on the bidding behavior of the subjects. The

requirement for hypothetical thinking is only affected in a sense that both players know

that they have the same information and thus face the same decision problem. The

justification for their setup is that the strategic nature of the original game, concerning

best-respond functions and equilibria, is still maintained, but this comes at the cost of

a higher complexity what makes it difficult to compare both games. However, the work

of Koch and Penczynski (2014) is a very important contribution to the current research,

since it provides the first joint analysis of both main explanations for the winner’s curse.

Levin et al. (2016) used an experiment to investigate the impact of Bayesian updating

and non-probabilistic reasoning (referred to as contingent reasoning in this paper) on

avoiding the winner’s curse. They used common-value Dutch and common-value first-

price auctions based on the model in Kagel et al. (1987) and compared both versions

to quantify the effect of non-probabilistic reasoning. Additionally they measured the

skills of the participants in Bayesian updating and non-probabilistic reasoning through a

questionnaire which the subjects had to answer before they participated in the auctions.

Levin et al. (2016) showed that both cognitive skills had an significant effect on avoiding

the winner’s curse resulting in higher earnings for the subjects. The authors used three

different forms of auctions as treatments: An active clock Dutch auction (AD) where the

auction ends when the first subjects stops the clock, an silent clock Dutch auction (SD)

where the auction ends, when the last subjects stops the clock (and no subject receives

any feedback whether he is the highest bidder) and a first-price sealed bid auction (FP).

Although all of these auction are strategically equivalent, Levin et al. (2016) claimed

that the requirements for hypothetical thinking in the AD treatment are reduced since

in the moment of stopping the clock the subject obviously knows that he is the highest

7So far Koch and Penczynski (2014) had been the only ones who combined contingent reasoning and
belief-based models in their experiment.

8In contrast to my design Koch and Penczynski (2014) focused on a related but different aspect of
contingent reasoning.
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bidder. The results of Levin et al. (2016) showed that the winning bidders lost money in all

treatments but substantially less in the AD treatment, and the authors suggested that the

subjects can better handle the winner’s curse if the requirements for hypothetical thinking

are reduced. Note that the AD treatment is still no dynamic treatment intervention

because strictly speaking only after stopping the clock the subject learns that he is the

highest bidder.9 The advantage of my design is that the bidders in the treatment group

receive this information before they have to come up with a bid.

To conclude this section: Many attempts have been used to investigate the impact of

hypothetical thinking in different common value environments. The novelty of my design

is that I use a dynamic treatment intervention (i.e. the subjects learn about a realized

event before they have to come up with a decision) in a real common value auction. At

the same time I leave all other parameters unchanged. This is for example not given in

the works of Charness and Levin (2009) and Koch and Penczynski (2014). In this sense I

am able to extract a clean measure of this cognitive ability and to identify a causal effect

on the behavior in common value auctions.

3 The model

In the following section a formal description of the wallet game will be presented. First

the general model and finally a simplified model of this game which is used in the experi-

ment. The theoretical derivations of the respective bidding functions are primarily based

on the works of Eyster and Rabin (2005) and Crawford and Iriberri (2007).

General model

The general wallet game with N bidders can formally be described as follows:

There is a set of N players with N ≥ 2. Each player i with i ∈ {1, 2, . . . , N} receives a

signal xi from a uniform distribution with range [xmin, xmax] which is common knowledge.

The bidders compete for an object worth v =
∑N

i=1 xi in an auction. The utility function

is assumed as symmetric across i such that ui(x) = v =
∑N

i=1 xi with x = [x1, x2, . . . , xN ]T

(see also Crawford and Iriberri, 2007).

Given that bidder i sees a signal of xi the expected value of the object is given by

r(xi) := E[V |Xi = xi] = xi + (N − 1) · E[Xj] = xi + (N − 1) · xmin + xmax
2

(1)

The expected value of the object given that bidder i sees a signal of xi and the highest

signal of all other bidders is y, is given by

v(xi, y) := E[V |Xi = xi, Yi = y] (2)

9A further problem of Dutch auctions is that the bidders have to make a decision pressed for time.
This can lead to various effects on an emotional level (see for example Adam et al., 2012, 2015).
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where Yi is defined as maxj 6=i xj. In this sense E[V |Xi = xi, Yi ≤ xi] is the expected value

of the object conditional on winning the auction.10 It can be shown that bidding

v(xi, xi) := E[V |Xi = xi, Yi = xi] = 2 · xi + (N − 2) · E[Xj|Xj ≤ xi]

= 2 · xi +
N − 2

2
· (xi − xmin)

(3)

is an equilibrium strategy of the wallet game in a second-price auction. This is the unique

symmetric equilibrium of this game (Eyster and Rabin, 2005; Crawford and Iriberri, 2007).

Henceforth using the bidding function bi(xi) = r(xi) refers to näıve bidding and using

the bidding function bi(xi) = v(xi, xi) refers to sophisticated bidding. In this context a

bidder who plays the näıve strategy bi(xi) = r(xi) overbids for any xi <
(N−1)·xmin+xmax

N

and underbids for any xi >
(N−1)·xmin+xmax

N
, relative to the symmetric equilibrium strategy

(see also Crawford and Iriberri, 2007).

Model with two players

For only two players we have

r(xi) = xi +
xmin + xmax

2
(4)

and

v(xi, xi) = 2 · xi (5)

It is easy to see that equation (4) describes bidding the own signal plus the expectation

of the other’s signal, whereas equation (5) describes bidding twice the own signal.

Additionally this game has also a continuum of asymmetric equilibria. For two players

i ∈ {1, 2} and for all α > 1 the following strategy pairs are Bayesian Nash Equilibria (see

Proofs in Appendix B):

b1(x1) = α · x1, b2(x2) =
α

α− 1
· x2 (6)

Additionally there can be even more equilibrium strategies like bidding b1(x1) = x1

and b2(x2) = 2 ·xmax. In this sense almost any bid can be rationalized as potential equilib-

rium strategy. However, all of those asymmetric equilibria involve weakly dominant bids

at least for some xi (for one player) since bidding above xi + xmax is weakly dominated

when this game is conducted as a second-price auction (see Proofs in Appendix B). This

makes asymmetric equilibria less plausible.11

10Under the assumption that all bidders have the same bidding function bi(xi) which is monotonically
increasing in xi.

11So for example choosing the maximal possible bid in a second-price sealed bid auction with private
values can also be part of an equilibrium strategy when all the other bidders always bid 0. However, this
is merely rational when a bidder does not know the bidding strategy of the other bidders.
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Simplified model with two players

I now present a slightly modified version of the wallet game with only low and high signals

possible and with a discrete signal space. This is the version used in the experiment.

In this simplified version two players, indexed by i = 1, 2, receive a private signal xi

drawn from the set X = {0, 1, . . . , 9, 10, 50, 51, . . . , 59, 60}, with each value equally likely

and with replacement. So in total 22 different signals are possible (11 low and 11 high

signals). The players compete for an object worth v = x1 + x2 in a second-price sealed

bid auction.

In case of a tie the players with the higher signal wins. If the signals are also equal,

both players receive a payoff of 0.12 The players are allowed to choose a bid bi in the

range of [0, 120], with only integer values possible.13

The payoff of player 1 (analogously for player 2) is thus given by:

π1 =


x1 + x2 − b2 if b1 > b2

x1 + x2 − b2 if b1 = b2 ∧ x1 > x2

0 otherwise

(7)

Since the symmetric equilibrium in the two player wallet game does not depend on

the distribution of the signals x1 and x2 the sophisticated bidding function remains the

same in this simplified version of the game (Klemperer, 1998). Also the näıve bidding

function remains unchanged since the expected value of the other’s signal is the same as

in a continuous setting (only the variance increases because of the gap).

The bidding functions for näıve and sophisticated bidding are:

r(xi) = xi + 30 (8)

and

v(xi, xi) = 2 · xi (9)

A useful property of this simplified model is that in this setup the sophisticated bidding

strategy is also a best-response for the näıve bidding strategy. So even if a sophisticated

player assumes that his opponent bids näıvely he still best-responds by using the sophisti-

cated bidding function. The intuition is simple: If the other player uses the näıve bidding

strategy the best response is to win always for high signals and to lose always for low

signals. This is given when following the sophisticated bidding rule.

As a concluding remark it is important to note that bidding bi(xi) = r(xi) = xi + 30

can be explained by both: mistakes in contingent reasoning and cursed equilibrium or

12So there are no chance elements and winning is always deterministic. In the symmetric equilibrium
both bidders would also receive a payoff of 0 in case of a tie.

13In a first trial session of the experiment I chose a maximal bid of 150. However, some of the
participants found this confusing and so I decided to restrict the bidding range. A maximal bid of 120
seems natural since the maximal possible value of the good is 120.
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level-k model (Eyster and Rabin, 2005; Crawford and Iriberri, 2007).14 This elucidates

a general dilemma in behavioral and experimental economics: even though a model fits

well to the data it is not clear whether it has indeed explanatory power. Hence it remains

important to disentangle competing theories.

4 Experimental design

Implementation

The experiment was conducted in the Regensburg Economics Science Lab (RESL). For

the technical implementation the software zTree was used (Fischbacher, 2007) and for

the recruitment of participants the online recruitment system ORSEE was used (Greiner

et al., 2004). In total 5 sessions were conducted with overall 72 participants (33 males

and 39 females). For each session I had between 10 and 18 participants (always an even

number). Table 1 shows an overview of all sessions.

The currency used in the experiment were Taler. All the signals and bids in the

experiment were expressed in terms of Taler. The exchange rate was 1 Euro = 10 Taler.

The participants were payed out in Euro at the end of the experiment. The average

payment was 16.02 Euro.

At the beginning of the experiment each participant was endowed with 50 Taler. At

the end of the experiment, the participants received their initial endowment plus (minus)

their generated earnings (losses) in both stages of the experiment (in total 6 rounds were

payoff-relevant). Additionally a show-up fee of 4 Euro was payed to each subject which

was guaranteed no matter what decisions the subject made during the experiment. So

each subject earned at least 4 Euro. If the losses exceeded 50 Taler the participants only

received their show-up fee. 4 out of 72 participants suffered from higher losses.

Session Participants Males/Females Treat. A/Treat. B Average earnings

1 18 7/11 9/9 16.89 EUR

2 16 7/9 6/10 17.21 EUR

3 18 8/10 12/6 13.25 EUR

4 10 4/6 4/6 15.58 EUR

5 10 7/3 8/2 17.99 EUR

Total 72 33/39 39/33 16.02 EUR

Table 1: Summary of all sessions

14A bidder who does not condition his bid on winning ignores the adverse selection issue inherent in
this kind of auction and only considers his private signal and a (fully) “cursed” bidder implicitly assumes
that the opponent will bid independently of his signal what makes bi(xi) = xi + 30 a best response.
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Basic setup

In the experiment the simplified model of the wallet game with only two players is used.

The experiment is divided into two stages. The subjects are informed that there is a

second stage but they receive the details only after finishing stage I. In stage I the players

participate in 15 rounds of the wallet game (i.e. each subject receives successively 15

random signals drawn from the set X = {0, 1, . . . , 9, 10, 50, 51, . . . , 59, 60} with replace-

ment).15 Each subject gets randomly matched with another subject of the group (e.g.

subject k and subject l). This constellation is stable for all 15 auctions. In this sense the

first signal of subject k is matched with the first signal of subject l, the second signal of

k is matched with the second signal of l and so on. The subjects receive no immediate

feedback after submitting their bids but only learn their payoff at the very end of the ex-

periment (i.e. after finishing stage II). So there should be neither endowment effects nor

learning effects. Three randomly selected rounds are payoff-relevant. A typical decision

screen of stage I is shown by Figure 2 in Appendix A.

Before starting with the actual task, all participants are asked to answer eight control

questions and to participate in five testing rounds of the wallet game without monetary

payoff but with immediate feedback about their hypothetical payoff after each bid to give

them a practical understanding of the game. However, the subjects receive no feedback

about the bid or the signal of the opponent. The opponent in the testing rounds is

undertaken by a computer who uses the bidding strategy bj(xj) = xj+30. The participants

are not explicitly informed about the strategy of the computer and they only learn that

the bidding function of the computer is monotonically increasing in his signal.16

Stage II is basically a repetition of stage I.17 All subjects receive the same 15 signals

as in stage I in the same order. In stage II the subjects play against an computerized op-

ponent who mimics the behavior of their former opponent from stage I. So subject k plays

against the decisions of subject l in stage I and vice versa. So each subject faces exactly the

same decision problems as in stage I if we abstract from social preferences.18 As in stage I

the bids and the signals of the opponent are not observable. The rules for bidding and

winning are the same as in stage I and the same three randomly selected rounds are again

payoff-relevant. In stage II the subjects are randomly assigned to either treatment A or B.

15The actual explanation in the experiment is that each player receives an envelope with a random
amount of money inside (see Instructions in Appendix D).

16The reason for using the näıve bidding function as a strategy for the computer in the testing rounds
is that deviating from the sophisticated bidding function bi(xi) = 2 · xi is much more harmful, when
the other player uses the näıve bidding function. If the computer would have used the sophisticated
bidding function, the subjects are less likely to realize that deviating from this strategy is a bad idea. In
the presented setup bi(xi) = 2 · xi is a best-response for both: the näıve and the sophisticated bidding
function.

17The subjects received the instructions for stage II only after all subjects completed stage I.
18In contrast to stage I the decisions do not affect the payoff of the opponent anymore. So if a subject

has preferences concerning the other player’s payoff the decision problem might be different for him.
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Treatment A - Information (Treatment group)

The subjects who receive treatment A (Information) are able to see for each signal whether

their initial bid from stage I was HIGHER or LOWER than the respective bid of the op-

ponent.19 E.g. if a subjects sees that his initial bid of bi = z̄ was HIGHER than the bid of

his opponent he knows that submitting a bid of b′i = z ≥ z̄ results in winning the auction

for sure. Conversely, if a subjects sees that his bid bi =
¯
z was LOWER than the bid of

his opponent, he knows that submitting a bid of b′i = z <
¯
z results in losing the auction

for sure. In this sense there is no requirement anymore to condition on the hypothetical

event of winning (or losing) for a certain range of bids especially for the bid which was

considered as optimal in stage I. An example of an typical screen is given by Figure 3 in

Appendix A.

Treatment B - No information (Control group)

The subjects in treatment B (No information) face exactly the same situation as those in

Treatment A except for the point that they do not get any information about the bid of

their opponent. Instead of HIGHER or LOWER they only see ??? on their screen. How-

ever, all subjects are informed about both treatments (i.e. the subjects in treatment B

know how treatment A looks like and vice versa). An example of an typical screen is

given by Figure 4 in Appendix A. The general structure of the treatments is illustrated

by Figure 1.

Wallet game

(k ↔ l)

15 rounds

15 rounds

15 rounds

Stage I Stage II

Wallet game +

information

(k → l)

Wallet game

(k → l)

p = 0.5

1 - p = 0.5

Figure 1: Illustration of the treatments

19If the bids are equal the subjects also get the message “LOWER”, so LOWER means lower or equal.
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5 Results

In this section the results of the experiment will be presented. For each of the 72 subjects

I have 15 observations which means that I collected N = 1080 observations in total.

One observation corresponds to one auction from the perspective of a particular subject

and includes the bids for both stages. The overall analysis is on an aggregate level and

when looking at the treatment effects I compare different subgroups, which differ in terms

of treatment (A, B), signal (low, high) and information (LOWER, HIGHER), with a

Diff-in-Diff approach.20

First I will give a descriptive overview about the overall bidding pattern in stage I

when there is no difference for the subjects and then I will present the effects of the treat-

ment intervention in terms of bidding behavior and the resulting profits.21 Finally I will

provide evidence that the observed behavior of the treatment group is to a large extent

driven by an actual updating of the opponent’s signal when receiving information which

is not hypothetical anymore and not because the subjects followed a simple decision rule

like “always decrease when you see HIGHER and always increase when you see LOWER”.

Result 1. Overall bidding pattern.

The median bids for low signals are above the Nash prediction and the median bids for

high signals are below the Nash prediction in stage I (see Figures 5 and 6 in Appendix

A). Especially for high signals the median bids are fitted very well by the näıve bidding

function bi(xi) = xi + 30. The results of a Wilcoxon sign rank test show that for high

signals the hypothesis that the actual bids are equal to bids resulting from the näıve

bidding function cannot be rejected (p = 0.624).

Overall we can observe an increased appearance of the winner’s curse for low signals

(16.67 % in stage I) and of the loser’s curse for high signals (17.02 % in stage I). Condi-

tional on winning the rate for the winner’s curse increases to 59.31 % for low signals and

conditional on losing the rate for the loser’s curse increases to 56.47 % for high signals.

These are very high rates especially when considering that the auctions were conducted as

second-price auctions. This shows clearly that the problem of irrational bidding behavior

is a considerable one.

20Since the subjects in treatment B do not receive information about their bid in stage II, this feedback
can be regarded as hypothetical and corresponds to the information they would have received if they had
been in treatment A.

21For the respective comparisons of the differences between treatment and control group I used a
Clustered Wilcoxon rank sum test based on the Rosner-Glynn-Lee method, since the observations are
not independent (Rosner et al., 2003). As an additional robustness check I also repeated these calculations
on an aggregate level by using the individual means of the respective outcome variables (see Appendix
C).
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Low (LOST) Low (WON) Low High (LOST) High (WON) High

No curse 338 59 397 74 378 452

91.11 % 40.69 % 76.94 % 43.53 % 95.94 % 80.14 %

Winner’s curse 0 86 86 0 16 16

0.00 % 59.31 % 16.67 % 0.00 % 4.06 % 2.84 %

Loser’s curse 33 0 33 96 0 96

8.89 % 0.00 % 6.40 % 56.47 % 0.00 % 17.02 %

Total 371 145 516 170 394 564

100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %

Table 2: Winner’s curse and loser’s curse in Stage I for different constellations of signals.

Winner’s curse: Won but with a negative payoff. Loser’s curse: Lost but could have won

the auction with a positive payoff.

Result 2. Deviation from Nash bid.

For the constellations “low signal and information HIGHER” and “high signal and infor-

mation LOWER” the absolute deviation from the Nash bid is lower in stage II compared

to stage I for the subjects in the treatment group on average. Both effects are signifi-

cantly larger than in the respective control group. For the other constellations the effect

is reverse. Overall, for both low and high signals, there is a very small effect which is on

the edge of significance, indicating that on average the subjects in the treatment group

deviate even further away from the Nash prediction in stage II than the subjects in the

control group. Table 3 reports the changes in the average absolute deviation from the

Nash bid from stage I to stage II for different constellations of signal and information and

compares the respective values between treatment and control group.

Constellation Means Observations Wilcoxon
(Std. deviation) A / B p-value

Change in absolute deviation from Nash bid

Information (A) No information (B) Difference
Low signals (HIGHER) -16.48 -11.41 -5.07 61 / 79

(15.21) (28.87) 0.011
Low signals (LOWER) 14.16 5.51 8.65 212 / 164

(15.93) (21.80) 0.000
High signals (HIGHER) 6.18 1.13 5.05 215 / 176

(12.19) (10.49) 0.000
High signals (LOWER) -18.82 -3.74 -15.09 97 / 76

(16.30) (13.43) 0.000
All signals (HIGHER) 1.17 -2.76 3.93 276 / 255

(15.96) (19.12) 0.110
All signals (LOWER) 3.81 2.58 1.23 309 / 240

(22.17) (19.99) 0.078

Notes: The last column reports the p-values of a Clustered Wilcoxon rank sum test using the
Rosner-Glynn-Lee method (Rosner et al., 2003). Clusters are on subject level.

Table 3: Summary Table - Deviation from Nash bid
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Result 3. Profits.

For low signals paired with the information HIGHER the change in average profits from

stage I to stage II is positive and significantly higher in the treatment group than in the

control group. The same is true for high signals paired with the information LOWER.

Conversely, for low signals paired with the information LOWER and for high signals

paired with the information HIGHER the change in average profits of the subjects in the

control group is significantly less negative than for those in the treatment group.22

It can also be seen that the positive effect of the information HIGHER for low signals

is greater in absolute terms than the negative effect of the information HIGHER for high

signals. However, the second constellation occurs more often and so the overall effect in

the treatment group is not significantly different from the one in the control group. The

same pattern can be seen for the information LOWER, where the effect is reverse (i.e.

the positive effect of the information LOWER for high signals is greater in absolute terms

than the negative effect of the information LOWER for low signals).

Figures 11 and 12 in Appendix A show the average profits in stage I and II for different

constellations of signal and information and compares them to the average profits when

the bidders would have unilaterally followed the symmetric Nash bidding rule. Table 4

reports the changes in average profits from stage I to stage II for different constellations

of signal and information and compares the respective values between the treatment and

control group.

As a robustness check I also used an alternative measure for profitability in which

any positive payoff is transformed into 1 and any negative payoff is transformed into −1.

In this sense there is only a distinction between whether an auction was won profitable,

unprofitable or lost. In contrast to the actual profit, the magnitude of this transformed

profit is not affected by the opponent’s bid what makes it a cleaner measure for sophis-

ticated bidding. The overall results do not change when using this transformed measure

for profits (see Appendix C). As a further robustness check I repeated the calculations of

Tables 3 and 4 on a subject level by using the individual means for the respective values.

Here again, the overall results do not change substantially (see Appendix C).

22For low signals paired with the information LOWER the difference between treatment and control
group is only significant at the 10%-level.
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Constellation Means Observations Wilcoxon

(Std. deviation) A / B p-value

Change in average profits

Information (A) No information (B) Difference

Low signals (HIGHER) 5.84 2.06 3.77 61 / 79

(9.76) (18.95) 0.045

Low signals (LOWER) -3.76 -1.79 -1.97 212 / 164

(10.83) (8.00) 0.071

High signals (HIGHER) -1.62 -0.20 -1.41 215 / 176

(7.39) (2.71) 0.024

High signals (LOWER) 5.68 0.57 5.11 97 / 76

(13.82) (9.37) 0.047

All signals (HIGHER) 0.03 0.50 -0.47 276 / 255

(8.54) (10.79) 0.534

All signals (LOWER) -0.80 -1.05 0.25 309 / 240

(12.61) (8.51) 0.789

Notes: The last column reports the p-values of a Clustered Wilcoxon rank sum test using the

Rosner-Glynn-Lee method (Rosner et al., 2003). Clusters are on subject level.

Table 4: Summary Table - Change in average profits

Result 4. Differentiation between low and high signals.

By construction of the game and the observed bidding behavior in most of the cases it

is profitable for the bidders to increase the initial bid for high signals and to decrease

the initial bid for low signals. Thus, when receiving either the information HIGHER

or LOWER it is important to distinguish between those two kinds of signals instead of

following the simple decision rule “decrease when you receive HIGHER and increase when

you receive LOWER”. The results show that when receiving the information HIGHER the

subjects in the treatment group strongly differentiate between low and high signals. The

decrease rate for low signals is 78.7 % and only 42.3 % for high signals. For the information

LOWER the subjects in the treatment group do not differentiate between low and high

signals. The increase rate for low signals is 83.0 % and 89.7 % for high signals. However,

the difference is not statistically significant. After receiving the information LOWER it

seems to be very tempting to increase the initial bid. This can be an indicator of an actual

joy of winning (or rather disappointment of losing) but this is also in line with theories

about hypothetical thinking. If the initial bid was higher it was actually the relevant

bid. If the initial bid was lower, this is not the case and the subjects have to engage in

hypothetical thinking again before coming up with a new bid.

The subjects in the control group who would have received the information HIGHER

or LOWER differentiate between low and high signals for both kinds of (hypothetical)

information. However, the fraction of decreasing and increasing a bid in stage II is much

lower compared to the treatment group. Figures 7 and 8 in Appendix A provide an
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graphical overview of the bid changing behavior in stage II. Table 5 reports the fractions

of decreasing and increasing the initial bids in stage II for different constellations of

treatment and information.

Constellation Fractions Observations Fisher’s exact

Fraction of decreased bids

Low signals High signals

HIGHER (Information) 0.787 0.423 61 / 215 0.000

HIGHER (No information) 0.456 0.165 79 / 176 0.000

Fraction of increased bids

Low signals High signals

LOWER (Information) 0.830 0.897 212 / 97 0.168

LOWER (No information) 0.415 0.618 164 / 76 0.004

Notes: The last column reports the p-values of Fisher’s exact test.

Table 5: Summary Table: Differentiation between low and high signals

Result 5. Changing of the bids in stage II.

Figures 9 and 10 in Appendix A show histograms of the bids in stage II for the sub-

jects in the treatment group for the constellations “low signal and information HIGHER”

and “high signal and information LOWER” conditional on increasing or decreasing, re-

spectively. These are the two constellations where the subjects in the treatment group

actually profited from the information they receive. Additionally these are the constella-

tions in which the respective information provides a relatively unambiguous hint about

the opponent’s signal.23 As already shown in Table 3 the average deviation from the

Nash prediction decreases from stage I to stage II resulting in higher average profits for

the subjects in the treatment group. However, it remains unclear whether the rational

increasing or decreasing of the bids is because the subjects realized that the events of

winning and losing provide information about the signal of the opponent or is just a rule

of thumb.

In Figure 9 it can be seen that there is an accumulation of bids below 20 in stage II

for low signals when receiving the information HIGHER (conditional on decreasing the

initial bid). This is actually an indicator that the subjects indeed realized that if they

win with a low signal, the other player has most likely also a low signal and hence they

bid exactly for this case (if both players have low signals, the maximal value of the good

23For example when receiving the information LOWER for a low signal it is not so clear whether the
opponent has a low or a high signal. The same is true for the information HIGHER when having a high
signal.
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is 20). Equivalently for high signals paired with the information LOWER there should

be an accumulation of bids above 100, when the subjects realize that the other player

has most likely a high signal, when losing with a high signal (if both players have high

signals, the minimal value of the good is 100). For this constellation the accumulation is

less distinct but still noticeable (see Figure 10 in Appendix A).

The results of Table 5 already showed that at least for the information HIGHER there

is a distinction between low and high signals. Combined with the results of Figures 9

and 10 it seems to be very plausible to assume that the changing behavior in stage II of

the subjects in the treatment group is to a large extent driven by an actual updating of

the opponent’s signal. This is also in line with the answers of a questionnaire, which was

provided after the actual experiment. 79.49 % (31 out of 39) of the participants in the

treatment group answered that the information they received helped them indeed to get

a better estimate of the opponent’s signal.

6 Conclusion and discussion

This paper investigates whether subjects in a common value auction perform better when

they already learn ex ante, before the final payoffs are known, whether their bid is the

winning bid or not - an information bidders in a sealed bid auction usually receive only

at the very end of the auction. The results show that there is a significant effect of the

information treatment on the bidding behavior of the participants. For low signals the

information that the bid was HIGHER helps the bidders to correct their bids downwards

resulting in much lower rates of the winner’s curse. On the other hand for high signals the

information that the bid was LOWER helps the bidders to increase their bids resulting

in bids closer to the Nash prediction and lower rates of the loser’s curse. However, for

high signals paired with the information HIGHER and for low signals paired with the

information LOWER there is a negative effect and the bidders in the treatment group

depart even further from the Nash prediction. The negative effects of the latter two con-

stellations are much smaller than the positive effects of the first ones in absolute terms

but the constellations “low signal and information LOWER” and “high signal and infor-

mation HIGHER” appear by construction more often than their respective counterparts

what results in a neutralization of the positive effect of the information treatment on the

average profit. So overall the bidders in the information treatment are not better off than

those who receive no information and we can see that additional information can be even

negative for the bidders.24

However, if we regard the two phenomena of winner’s and loser’s curse separately, the

24In related studies like Charness and Levin (2009) and Koch and Penczynski (2014) the optimal
behavior was mainly given by choosing a bid as low as possible. In my design the bidders have to
differentiate between low and high signals and decreasing a bid is not always optimal. This additional
hurdle shows that additional information can be negative for the bidders when they differentiate only
imperfectly between situations in which decreasing (increasing) a bid is rational and those in which it is
not.
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information treatment is indeed helpful for the bidders. The information HIGHER helps

to significantly reduce the winner’s curse and the information LOWER helps to signifi-

cantly reduce the loser’s curse if we look at those constellations in which the respective

information provides a relatively unambiguous hint about the opponent’s signal. For the

information HIGHER the bidders in the treatment group strongly differentiate between

low and high signals (though imperfectly), resulting in a much higher decreasing rate for

low signals, what indicates that the changing of the bids is not just a rule of thumb but

rather due to Bayesian updating. This claim is also supported by the pattern that condi-

tional on decreasing a bid for low signals after receiving the information HIGHER, most

of these newly chosen bids are below 20. This suggests that the bidders indeed realized

that the other bidder has most likely also a low signal. For the information LOWER

there is no significant differentiation between low and high signals but in this case there

is again a requirement of conditioning on winning for the bidders. So for example a näıve

Bayesian updater might correctly assume that the value of the good is higher than ex-

pected when receiving the information LOWER and increase his initial bid. The problem

is that the new bid is not chosen conditional on winning what results in an even more

frequent appearance of the winner’s curse for low signals.

A further conclusion is that the overall behavior of the subjects in the treatment group

in stage II cannot be explained by cursed equilibrium since a “cursed” bidder assumes by

definition that the bids and signals of the opponent are not (or only partly) correlated.

Hence such a bidder ought not react on the information of winning or losing because he

implicitly assumes that the bid of the opponent provides no valid information about the

true value of the good. By definition the bid of a “cursed” player is already evaluated

conditional on winning in stage I and hence there would be no need to change it in stage II.

This casts doubts whether the initial bidding behavior in stage I can be explained by

cursed equilibrium unless one assumes that a bidder can suffer from both: a cursed system

of beliefs and the inability of thinking in hypothetical situations. However, it is not clear

how or whether the effects of both cognitive mistakes add up. So far Koch and Penczynski

(2014) had been the only ones who looked at both combined in a lab setting but more

research is needed especially concerning the interaction of both cognitive mistakes. In

general my findings support the claim of Ivanov et al. (2010) who stated that bidders in

common value auctions might act “as if” they have cursed beliefs.25

As a concluding remark there is to say that mistakes in hypothetical thinking seem to

explain a substantial part of irrational bidding behavior in common value auctions. How-

ever, even without the necessity of conditioning on winning there still exists a significant

deviation from optimal behavior which remains unexplained.

25Ivanov et al. (2010) were one of the first authors who claimed that bidders in common value auctions
might just act “as if” they have cursed beliefs since they observed seemingly cursed behavior in a context
where belief-based models had few explanatory power.
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Astor, P. J., Adam, M. T., Jähnig, C., and Seifert, S. (2013). The joy of winning and the

frustration of losing: A psychophysiological analysis of emotions in first-price sealed-bid

auctions. Journal of Neuroscience, Psychology, and Economics, 6(1):14–30.

Avery, C. and Kagel, J. H. (1997). Second-price auctions with asymmetric payoffs: An

experimental investigation. Journal of Economics & Management Strategy, 6(3):573–

603.

Bazerman, M. H. and Samuelson, W. F. (1983). I won the auction but don’t want the

prize. Journal of Conflict Resolution, 27(4):618–634.

Brocas, I., Carrillo, J. D., and Castro, M. (2017). Second-price common value auctions

with uncertainty, private and public information: experimental evidence. Journal of

Behavioral and Experimental Economics.

Camerer, C., Nunnari, S., and Palfrey, T. R. (2016). Quantal response and nonequilibrium

beliefs explain overbidding in maximum-value auctions. Games and Economic Behavior,

98:243–263.

Capen, E. C., Clapp, R. V., Campbell, W. M., et al. (1971). Competitive bidding in

high-risk situations. Journal of Petroleum Technology, 23(6):641–653.

Charness, G. and Levin, D. (2009). The origin of the winner’s curse: A laboratory study.

American Economic Journal: Microeconomics, 1(1):207–236.

Costa-Gomes, M. A. and Shimoji, M. (2015). A comment on “Can relaxation of beliefs

rationalize the winner’s curse?: An experimental study”. Econometrica, 83(1):375–383.

Crawford, V. P. and Iriberri, N. (2007). Level-k auctions: Can a nonequilibrium model of

strategic thinking explain the winner’s curse and overbidding in private-value auctions?

Econometrica, 75(6):1721–1770.

Esponda, I. and Vespa, E. (2014). Hypothetical thinking and information extraction in

the laboratory. American Economic Journal: Microeconomics, 6(4):180–202.

20



Esponda, I. and Vespa, E. (2016). Contingent preferences and the sure-thing principle:

Revisiting classic anomalies in the laboratory. working paper.

Evans, J. S. B. et al. (2007). Hypothetical thinking: Dual processes in reasoning and

judgement, volume 3. Psychology Press.

Eyster, E. and Rabin, M. (2005). Cursed equilibrium. Econometrica, 73(5):1623–1672.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments.

Experimental economics, 10(2):171–178.

Greiner, B. et al. (2004). The online recruitment system orsee-a guide for the organization

of experiments in economics. Technical report, Max Planck Institute of Economics,

Strategic Interaction Group.

Holt, C. A. and Sherman, R. (1994). The loser’s curse. The American Economic Review,

84(3):642–652.

Ivanov, A., Levin, D., and Niederle, M. (2010). Can relaxation of beliefs rationalize the

winner’s curse?: An experimental study. Econometrica, 78(4):1435–1452.

Kagel, J. H., Harstad, R. M., and Levin, D. (1987). Information impact and allocation

rules in auctions with affiliated private values: A laboratory study. Econometrica,

55(6):1275–1304.

Kagel, J. H. and Levin, D. (1986). The winner’s curse and public information in common

value auctions. The American Economic Review, 76(5):894–920.

Klemperer, P. (1998). Auctions with almost common values: The wallet game and its

applications. European Economic Review, 42(3):757–769.

Koch, C. and Penczynski, S. P. (2014). The winner’s curse: Conditional reasoning &

belief formation. working paper.

Levin, D., Peck, J., and Ivanov, A. (2016). Separating bayesian updating from non-

probabilistic reasoning: An experimental investigation. American Economic Journal:

Microeconomics, 8(2):39–60.

Li, S. (2015). Obviously strategy-proof mechanisms. Available at SSRN 2560028.

Louis, P. (2013). The barrel of apples game: Contingent thinking, learning from observed

actions, and strategic heterogeneity. working paper.

Ngangoue, K. and Weizsacker, G. (2015). Learning from unrealized versus realized prices.

working paper.

Nickerson, R. (2015). Conditional Reasoning: The Unruly Syntactics, Semantics, The-

matics, and Pragmatics of “if”. Oxford University Press.

21



Rosner, B., Glynn, R. J., and Ting Lee, M.-L. (2003). Incorporation of clustering effects

for the wilcoxon rank sum test: a large-sample approach. Biometrics, 59(4):1089–1098.

Savage, L. J. (1972). The foundations of statistics. Courier Corporation.

Singmann, H., Klauer, K. C., and Beller, S. (2016). Probabilistic conditional reasoning:

Disentangling form and content with the dual-source model. Cognitive Psychology,

88:61–87.

Van den Bos, W., Li, J., Lau, T., Maskin, E., Cohen, J. D., Montague, P. R., and McClure,

S. M. (2008). The value of victory: Social origins of the winner’s curse in common value

auctions. Judgment and Decision Making, 3(7):483–492.

22



A Figures

Decision screens

Figure 2: Typical decision screen in stage I. The value of your envelope is 52 Taler. How

many Taler do you want to bid to receive your envelope and the envelope of the other

player?
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Figure 3: Typical decision screen in stage II (treatment A). The value of your envelope

is 50 Taler. Your bid in part 1 was 99 Taler. Your bid was HIGHER than the bid of the

other player. The other player will choose the same bid as in part I again. How many

Taler do you want to bid to receive your envelope and the envelope of the other player?
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Figure 4: Typical decision screen in stage II (treatment B). The value of your envelope

is 8 Taler. Your bid in part 1 was 99 Taler. Your bid was ??? than the bid of the other

player. The other player will choose the same bid as in part I again. How many Taler do

you want to bid to receive your envelope and the envelope of the other player?
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Bidding behavior

Median bids

Figure 5: Median bids - Low signals

Figure 6: Median bids - High signals
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Changing of the bids in stage II

Figure 7: Changing of the bids when bid was LOWER

Figure 8: Changing of the bids when bid was HIGHER
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Changing of the bids in stage II

Figure 9: Stage II bid (conditional on decreasing)

Figure 10: Stage II bid (conditional on increasing)
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Profits

Average profits

Figure 11: Average profits for low signals

Figure 12: Average profits for high signals

29



Average profits (transformed)

Figure 13: Average profits (transformed) for low signals

Figure 14: Average profits (transformed) for high signals
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B Proofs

Proof. In the two player wallet game, conducted as second-price sealed bid auction, any

bid outside the interval [xi, xi+xmax] is weakly dominated. Consider two players, indexed

by i = 1, 2.

(i) Bidding below xi is weakly dominated by bidding xi. If player 1 would have lost the

auction with b1(x1) = x1, deviating to a bid below x1 (b′1(x1) < b1(x1)) would not change

the result because b′1(x1) < b1(x1) ≤ b2(x2). If player 1 would have won the auction with

b1(x1) = x1 he receives a payoff of at least 0, because the value of the object is at least

x1 and b2(x2) ≤ b1(x1) = x1. Deviating to a bid below x1 can lead to losing an auction

that generated a positive payoff. This is the case if player 1 bids x1− δ and player 2 bids

x1 − ε with δ > ε ≥ 0. Thus player 1 gives up an auction that guarantees a payoff of at

least x1 + x2 − x1 + ε = x2 + ε ≥ 0. If ε > δ > 0 player 1 still wins when he deviates, but

the payoff does not change, because he still receives x1 + x2 − x1 + ε = x2 + ε as before.

(ii) Bidding above xi + xmax is weakly dominated by bidding xi + xmax. If player 1

would have won the auction with b1(x1) = x1 +xmax he receives either a positive, negative

or zero payoff. Deviating to a bid above x1 + xmax ((b′1(x1) > b1(x1)) would not change

the result because b′1(x1) > b1(x1) ≥ b2(x2). If player 1 would have lost the auction with

b1(x1) = x1 + xmax he receives a payoff of 0. Deviating to a bid above x1 + xmax can

lead to winning the auction, but the payoff is at best 0, because the value of the object

is at most equal to x1 + xmax and b2(x2) ≥ b1(x1) = x1 + xmax. So if player 1 deviates to

x1 + xmax + δ and player 2 bids x1 + xmax + ε with δ > ε ≥ 0, player 1 faces a loss of at

least ε ≥ 0.

Proof. In the two player wallet game, conducted as second-price sealed bid auction, bid-

ding b1(x1) = α · x1 and b2(x2) = α
α−1 · x2 are equilibrium strategies for any α > 1.

Consider two players, indexed by i = 1, 2. Suppose, without loss of generality, player 1

follows the bidding rule b1(x1) = α · x1. Player 2 knows that the price he has to pay in

the winning case is equal to p = α · x1. So winning is beneficial for him as long as

x1 + x2 ≥ p ⇔ x2 + p
α
≥ p ⇔ x2 ≥ p · α−1

α
⇔ p ≤ α

α−1 · x2. Since we have a second-price

auction player 2 will bid exactly b2(x2) = α
α−1 · x2.

Now suppose player 2 follows the bidding rule b2(x2) = α
α−1 · x2. Player 1 knows that

the price he has to pay in the winning case is equal to p = α
α−1 ·x2. So winning is beneficial

for him as long as x1 + x2 ≥ p⇔ x1 + p · α−1
α
≥ p⇔ x1 ≥ p

α
⇔ p ≤ α · x1. Since we have

a second-price auction player 1 will bid exactly b1(x1) = α · x1.
Hence bidding b1(x1) = α · x1 and b2(x2) = α

α−1 · x2 are equilibrium strategies for any

α > 1. Note that this argumentation does not relay on the distribution of the signals x1

and x2.
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C Robustness

Transformed profit

As an alternative measure for profitability I used a more robust measure of the profits in

which any positive payoff is transformed into 1 and any negative payoff is transformed

into −1. So there is only a distinction between whether an auction was won profitable,

unprofitable or lost. Unlike the actual profit, the magnitude of this transformed profit is

independent of the opponent’s bid.

Figures 13 and 14 in Appendix A show the average profits (transformed) in stage I and

II for different constellations of signal and information and compares them to the average

profits (transformed) when the bidders would have unilaterally followed the symmetric

Nash bidding rule. Table 6 reports the changes in average profits (transformed) from

stage I to stage II for different constellations of signal and information and compares the

respective values between the treatment and control group.

Constellation Means Observations Wilcoxon

(Std. deviation) A / B p-value

Change in average profits (transformed)

Information (A) No information (B) Difference

Low signals (HIGHER) 0.34 0.04 0.31 61 / 79

(0.60) (0.49) 0.030

Low signals (LOWER) -0.13 -0.06 -0.07 212 / 164

(0.35) (0.29) 0.071

High signals (HIGHER) -0.06 -0.01 -0.05 215 / 176

(0.23) (0.08) 0.024

High signals (LOWER) 0.22 0.03 0.19 97 / 76

(0.56) (0.33) 0.041

All signals (HIGHER) 0.03 0.01 0.02 276 / 255

(0.38) (0.28) 0.498

All signals (LOWER) -0.02 -0.03 0.01 309 / 240

(0.46) (0.30) 0.796

Notes: The last column reports the p-values of a Clustered Wilcoxon rank sum test using the

Rosner-Glynn-Lee method (Rosner et al., 2003). Clusters are on subject level.

Table 6: Summary Table - Change in average profits (transformed)
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Individual means

Tables 7 and 8 are equivalents to Tables 3 and 4, but with the difference that the ob-

servations are aggregated on the subject level. For each subject and constellation the

individual mean of the respective outcome variable was used.

Constellation Means Observations Wilcoxon
(Std. deviation) A / B p-value

Change in absolute deviation from Nash bid

Information (A) No information (B) Difference
Low signals (HIGHER) -13.12 -8.31 -4.81 24 / 25

(12.70) (21.29) 0.027
Low signals (LOWER) 13.65 3.94 9.70 39 / 31

(11.23) (15.33) 0.000
High signals (HIGHER) 6.80 1.22 5.58 38 / 32

(11.08) (10.62) 0.000
High signals (LOWER) -18.79 -3.22 -15.57 26 / 24

(15.78) (11.70) 0.000
All signals (HIGHER) 1.85 -1.40 3.25 38 / 32

(8.88) (10.32) 0.059
All signals (LOWER) 4.76 2.07 2.68 39 / 31

(12.41) (14.46) 0.055

Notes: The last column reports the p-values of a Wilcoxon rank sum test.

Table 7: Summary Table - Deviation from Nash bid (individual means)

Constellation Means Observations Wilcoxon

(Std. deviation) A / B p-value

Change in average profits

Information (A) No information (B) Difference

Low signals (HIGHER) 6.17 3.48 2.69 24 / 25

(8.67) (13.09) 0.031

Low signals (LOWER) -3.86 -1.45 -2.42 39 / 31

(6.37) (4.00) 0.035

High signals (HIGHER) -1.83 -0.38 -1.46 38 / 32

(4.72) (2.12) 0.085

High signals (LOWER) 7.78 2.49 5.29 26 / 24

(13.67) (7.15) 0.029

All signals (HIGHER) -0.07 0.35 -0.41 38 / 32

(3.18) (4.46) 0.398

All signals (LOWER) -1.06 -0.82 -0.24 39 / 31

(7.46) (4.13) 0.279

Notes: The last column reports the p-values of a Wilcoxon rank sum test.

Table 8: Summary Table - Change in average profits (individual means)
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D Instructions

We would like to welcome you to this economic experiment! During the experiment you

have the possibility to conduct a task that is explained in detail in the following instruc-

tions. In the experiment you can win a non-negligible amount of money. The amount of

your payoff depends on your decisions, on the other participants’ decisions and on chance.

During the experiment it is forbidden to communicate with the other participants. Please

read through the instructions at hand thoroughly. Should you have questions before or

during the experiment, please raise your hand and an experimenter will come to your seat.

General Structure

The experiment consists of two parts. Now, part 1 will be explained. After part 1 ends

you will receive separate instructions for part 2. Your decisions in part 1 do not influence

your payoff in part 2. During the whole experiment you can earn Taler. These will be

converted into Euros after the experiment. The conversion rate is

10 Taler = 1 EURO

At the begin of the experiment you are endowed with 50 Taler. Your experimental credit

at the end of the experiment consists of these 50 Taler plus your profits and minus your

losses in part 1 and part 2. If you lose more than 50 Taler in the course of the experiment,

your experimental credit drops down to 0 Taler. At the end of the experiment you receive

your experimental credit in EUR. Anyway, independent of your decisions in the course of

the experiment, you will receive 4 EUR show-up fee at the end of the experiment. Your

final payout will be calculated as follows:

Final Payout = 4 EUR + experimental credit from part 1 and part 2 (in EUR)

Important remark

All numerical examples that are used in the instructions and later on in the control

questions for exemplification consist of arbitrary values and do not give a hint for optimal

behavior in this experiment!

Part 1

Basic idea

This experiment’s underlying task is the following:

• Together with one other player you participate in an auction

• You and the other player receive each a randomly selected sealed envelope

that contains money
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• There are red and blue envelopes

• A red envelope contains a random integer amount between 0 and 10 Taler (all

values are equally likely)

• A blue envelope contains a random integer amount between 50 and 60 Taler (all

values are equally likely)

• Both colors are equally likely

• Thus, all together there are 22 different amounts an envelope can contain and every

amount is equally likely

• The colors and the amounts in both envelopes are independent of one another

and it is also possible that both players receive the same amount

The following combinations are possible:

Player 1 Envelope (0-10 Taler) Player 2 Envelope (0-10 Taler)

Player 1 Envelope (0-10 Taler) Player 2 Envelope (50-60 Taler)

Player 1 Envelope (50-60 Taler) Player 2 Envelope (0-10 Taler)

Player 1 Envelope (50-60 Taler) Player 2 Envelope (50-60 Taler)

Both players are allowed to open their own envelope. This implies that every player gets

to know his own amount but not the other player’s amount and color.

Then, both players participate in an auction, in which the highest bidder can win both

envelopes and the money the envelopes contain.

Both players can submit a bid once. The highest bidder wins both envelopes and pays

the bid of the inferior bidder. The inferior bidder does not receive an envelope and does

not have to pay anything - thus, he does neither make profit nor losses.

The rules in detail

Bidding

You and the other player can submit once an integer bid between 0 and 120 Taler.

These bids are made secretly, i.e. the other player does not see what bid you have made

and vice versa.

Winning and Losing

The winner and the payoff are determined as follows:

You win, if:
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1. Your bid is higher than the other player’s bid

2. Your bid equals the other player’s bid and your envelope contains more money

If your bids as well as the contents of the envelopes are equal, both players receive a payoff

of 0. If your bid is lower than the other players bid, you lose and receive a payoff of 0.

Payoff

If you have won the auction your payoff is calculated as follows:

You receive the money of both envelopes and pay for this the other player’s bid.

Thus, you do not pay your own bid, but the bid of the inferior bidder. This implies that

in the winning case you must pay at most your own bid.

Is the amount of both envelopes higher than the bid you have to pay, you make profit. Is

the amount of both envelopes lower than the bid you have to pay, you make a loss. If you

have lost the auction, you receive a payoff of 0 - thus, you do neither make profit nor losses.

Example

Assume, you have 50 Taler in your envelope and the other player would have 10 Taler in

his envelope (every player only knows his own amount). You bid 90 Taler and the other

player bids 45 Taler (every player only knows his own bid). You win the auction, because

you have submitted the higher bid. So, you win both envelopes and pay the other player’s

bid. Your profit in this round would be 60−45 = 15 Taler. The other player’s profit would

be 0 Taler.

The course of the experiment

Trial phase

At first you will bid in 5 trial rounds for the envelopes. During these 5 rounds you do

not play against another human player, but against a computer. These rounds are not

relevant for your payoff and their only purpose is to gain an understanding of the

game and its general course. In every round you and the computer will receive a ran-

domly selected amount between 0 and 10 or 50 and 60. This implies for you that you

see in every round a randomly selected integer number between 0 and 10 or 50 and 60

on your screen. This number symbolizes the content of an envelope (you can

find an example screenshot at the bottom of this page). You only get to know your own

amount, but not your computer opponent’s amount and vice versa. Now, you can submit

once (per round) any integer bid between 0 and 120 Taler. Overall you participate in 5

auctions. After every round (i.e. after every bid) you receive an immediate feedback on

your hypothetical profit or loss. However, you do not get to know the opponent’s bid or

the amount the computer received. The computer is programmed to choose a bid that

depends on his amount, i.e. the higher the computer’s amount the higher the bid the
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computer chooses.

[SCREEN 1]

Main phase

After the trial phase you bid in 15 rounds for the envelopes and now you can receive an

actual monetary payoff. In the main phase you do not compete with a computer, but

with a human player. Your opponent will be randomly drawn from this room. You do not

know who your opponent is nor does your opponent. The general course will be similar

as in the trial phase. This means, in every round you and the other player will see a

respective amount on your screen, which is a randomly selected number between 0 and

10 or between 50 and 60 that symbolizes the content of an envelope. In every round

you and the other player can submit any integer bid between 0 and 120 Taler. But now,

you do not receive an immediate feedback after each bid and you only get to know at

the very end of the experiment (i.e. only when part 2 is finished) your final payoff.

Out of the 15 rounds 3 randomly selected rounds are relevant for your payoff.

The other 12 rounds do not influence your payoff. Your profit or loss from this three

randomly selected rounds is added to or subtracted from your initial endowment of 50

Taler, respectively.

Example

Assume, round 1,2 and 3 are randomly selected for the payoff. In round 1 your payoff is 30

Taler, in round 2 your payoff is −5 Taler and in round 3 your payoff is 0 Taler. Your profit

in part 1 would be 25 Taler. Your current experimental credit would be 50+25 = 75 Taler.

[SCREEN 2]

Part 2

Now, you will bid for the envelopes once again. For this purpose you and your previous

opponent will receive the same amounts as in part 1 once again in the same order. In

contrast to the previous part you do not bid directly against your opponent, but against

his decisions that he made in part 1. This implies that your opponent does not make

new decisions in part 2 and he will bid in every round exactly as in part 1. As you

only compete with your opponent indirectly, your decisions in part 2 do not influence the

payoff of your opponent in part 2.

In part 2 you are randomly assigned to a role: either A or B. Both roles are equally

likely. Your role is determined before the beginning of the 15 rounds by a virtual coin

toss. Your respective role is constant for all 15 rounds and is displayed at the top of the

screen.
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If your role is A, you see for every amount additionally on the screen, whether your re-

spective bid in part 1 was HIGHER or LOWER than the other player’s bid. If the

bids are equal, it will also be displayed “LOWER” (thus, “HIGHER” means strictly

higher and “LOWER” means lower or equal). If your role is B, you receive no further

information in part 2 and instead of HIGHER or LOWER it is only displayed “???”.

Independent of your role you are once again in every round allowed to submit a bid, which

can be as in part 1 between 0 and 120 Taler. The rules for winning and losing are exactly

as in part 1 and also your payoff is computed equally. As already in part 1 the same three

randomly selected rounds determine your payoff (i.e. if round 1, 2 and 3 were selected in

part 1, round 1, 2 and 3 also determine your payoff in part 2). Your profit or loss from

part 2 is added to or subtracted from your current experimental credit. Also in part 2

you do not receive immediate feedback after every bid, but you get to know your final

payoff only at the very end of the experiment.

Summarized

• Part 2 is a repetition of the main phase of part 1

• In part 2 you have the same opponent as already in part 1

• Now you do not compete with your opponent directly, but with his decisions he

made in part 1

• Your opponent will bid in part 2 exactly as in part 1

• You are randomly assigned to either role A or B

• If your role is A, you additionally see, whether your bid in part 1 was higher or

lower than the other player’s bid

• If your role is B, you do not receive additional information

[SCREEN 3]

[SCREEN 4]

Example (role - A)

Part 1 - 1st round: You have 50 Taler in your envelope and the other player has 10 Taler

in his envelope (every player only knows his own amount). You bid 90 Taler and the other

player bids 45 Taler (every player only knows his own bid).

Part 2 - 1st round: Now you receive once again an envelope that contains 50 Taler and the

other player again receives an envelope that contains 10 Taler (every player only knows

his own amount). Now, you see on your screen that your bid in part 1 was HIGHER

than the other player’s bid (as 90 is larger than 45 - anyway, also in part 2 you do not
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know the other player’s exact bid). Now, you can submit any bid between 0 and 120 Taler

once again. The other player bids 45 Taler as in part 1.

Example (role - B)

Part 1 - 1st round: You have 50 Taler in your envelope and the other player has 10 Taler

in his envelope (every player only knows his own amount). You bid 90 Taler and the other

player bids 45 Taler (every player only knows his own bid).

Part 2 - 1st round: Now you receive once again an envelope that contains 50 Taler and the

other player again receives an envelope that contains 10 Taler (every player only knows

his own amount). You do not receive further information about the other player’s bid

on your screen. Now, you can submit any bid between 0 and 120 Taler once again. The

other player bids 45 Taler as in part 1.
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