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Abstract

Studies in neuropsychology show that the human brain processes small numbers

and large numbers differently. Small numbers are processed on a linear scale, while

large numbers are processed on a logarithmic scale. Recent papers in finance and

accounting also indicate that market participants exhibit a bias in their perception of

the future return distribution of small and large price stocks. In this paper , we report

the results of an experiment in which we test for the existence of a small price effect.

Our experiment consists in 8 sessions of two sequential experimental markets where the

cash-flows and endowments are 12 times higher in one market compared to the other.

We find that optimism, measured as the relative difference between transaction prices

and fundamental values, is significantly greater in small price markets. This result is

obtained both within and across subjects. Our experimental results indicate that price

level influences the way people perceive relative price variations (i.e., returns), a result

at odds with standard finance theory but consistent with: 1) a number of empirical

observations on financial markets; and, 2) the use of different mental scales for small

and large prices.
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1 Introduction

Normative decision theory assumes that expectations are not sensitive to changes in the

way information is presented. For instance, the magnitude of a stock price should not influ-

ence return expectations, future realized returns nor portfolio choices. Empirical evidence

on financial markets, however, show that the stock price level has an impact on stock re-

turns, analysts’ forecasts and investors’ portfolio choice. Schultz (2000) finds that 1) retail

investors hold lower-priced stocks than institutions, and 2) the number of retail investors

among shareholders of a firm increases after a forward stock split that decreases the stock

price without changing the fundamentals of the firm. Green and Hwang (2009) show that

the returns of small (large) price stocks comove more together than with the returns of

large (small) price stocks. Birru and Wang (2016) provide evidence that investors over-

estimate the room to grow for small price stocks, compared to large price stocks. Baker,

Greenwood, and Wurgler (2009) find that firms manage nominal prices through forward

stock splits when investors are willing to pay a premium for small price stocks.

Roger, Roger, and Schatt (2016) show that financial analysts exhibit a small price

bias when issuing price forecasts (target prices). Analysts exhibit a greater optimism

for small price stocks compared to large prices stocks. Target price implied returns are

greater for small price stocks and this difference cannot be explained by risk factors. The

authors link their findings to recent research in neuropsychology devoted to the mental

representation of numbers (Dehaene, 2011, for a review). The main model for number

representation in the human brain is the Weber-Fechner law (Nieder, 2005). This law

states that the brain uses a logarithmic scale to represent numbers: increasingly larger

numbers are subjectively closer together. This theoretical framework is in line with the

assumption of standard finance theory stating that people select stocks on the distribution

of future returns (logarithmic scale), not price expectations (linear scale). In other words,

under Weber-Fechner law, returns implied by price forecasts should be independent of

the stock price level. However, recent papers (Dehaene, Izard, Spelke, and Pica, 2008;

Hyde and Spelke, 2009) have shown that the Weber-Fechner law is not satisfied for small

numbers. People tend to use a linear scale for small numbers and they compress large

numbers on a logarithmic scale (Viarouge, Hubbard, Dehaene, and Sackur, 2010). The

use of different scales for small and large numbers is likely to impact market participants’

expectations.

In this paper, we report the results of an experiment in which we test for the existence

of a small price effect. Our experiment consists in 8 sessions of two sequential experimental

markets where the cash-flows and endowments are 12 times higher in one market compared
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to the other. In four sessions, the first experimental market is the “small price” market

and the following market is the “large price” market. In the four other sessions, the

order of the two successive markets is reversed. Overall, we find that these two different

experimental markets generate different trading price processes. Consistent with the linear

vs. logarithmic scales in processing numbers, we find that subjects’ optimism is greater in

“small price” markets. This result is obtained both within and across subjects.

2 Sketch of the experimental design

In this paper, we aim at controlling all risk factors to focus on the potential effect of

price magnitude in the determination of returns. It is known since Smith, Suchanek, and

Williams (1988) that experimental markets lead to bubbles followed by crashes that drive

prices to fundamental values at the end of the market. As a consequence, the assumption

of different types of scales for small and large numbers should lead to larger bubbles and

sharper crashes in small-price markets. We run 8 sessions with 2 successive experimental

markets per session with the same traders in the two markets of a given session. One

market is a small price market and the other is a large price market. In each market of

a given session, our protocol follows the spirit of Smith, Suchanek, and Williams (1988)

(SSW) but departs from the SSW conditions in several ways. Being given the purpose of

our paper, we first want to avoid inducing anchors in the traders’ minds by choosing a

constant fundamental value. Second, prices in a given experimental market should keep the

same magnitude. It therefore excludes the initial SSW design where fundamental values

converge to 0 over time. As a consequence, we design a sequence of random cash-flows

whose distribution is known by subjects. The cumulated payoff received by an investor

holding the stock at the end of the market is the sum of the cash-flows drawn at random

at each date t, t = 1, ...10. No intermediate dividends are paid to the participants (see the

Appendix for details).

Our design has several advantages beyond the stability of the price magnitude in a

given market. The stochastic process of fundamental values is a martingale with respect

to the filtration generated by the cash-flow process. As a consequence, it is easy to define

a simple measure of optimism using the relative deviation of trading prices with respect

to the fundamental value. The second advantage is that we can build sessions with two

successive markets, one with small prices and the other with large prices, in such a way

that the distribution of large cash-flows (and consequently of fundamental values) is 12

times the distribution of small cash-flows.
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The experiment was conducted at LEEM, the computerized laboratory of the Univer-

sity of Montpellier I, with the software z-Tree (Fischbacher, 2007). The 8 sessions involved

9 traders each. The 72 subjects were randomly selected from a pool of student-subjects

containing more than 5000 volunteers from the Universities of Montpellier. In each ses-

sion, groups of 9 anonymous participants were randomly formed and remained fixed for the

whole session. The experiment consisted in 20 periods divided into 2 independent markets

lasting T = 10 periods each. 4 sessions were of the SL (LS) type, starting by a small

(large) price market followed by a large (small) price market. This design allows compar-

ison between and within subjects to test whether small and large numbers are processed

differently by participants.

Subjects were provided with incentives in a usual way. They first completed a task

giving them the possibility of earning e 30. Then, one of the two markets (small-price or

large-price) was drawn at random to be paid. The aggregate amount of 9 × e 30 = e 270

was shared among subjects in proportion of their final wealth at the end of the market

randomly drawn to be paid. Table 1 shows the composition of portfolios and the sequences

of cash-flows. In a given market, the initial theoretical value of all portfolios is equal. P1

to P3 (P4 to P6) are the portfolios in the small (large) price market. The value of the

theoretical portfolio in the large-price market is worth 12 times the value of the theoretical

portfolio value in the small price market. Panel B shows the two sequences of cash-flows

in the small (large)-price market. The vector of cash-flows in the large-price market is 12

times the vector of cash-flows in the small-price market. A permutation has, however, been

used to avoid that subjects recognize the cash-flow sequence. These cash-flow sequences

imply an initial fundamental value of 6 (72) for the small (large) price market.

3 Preliminary results

Let V S = V S
t , t = 0, ..., T (V L = V L

t , t = 0, ..., T ) the fundamental value process on the

small (large) price market and PS = PSt , t = 1, ..., T (PL = PLt , t = 0, ..., T ) the median

prices observed on the experimental market. To make these quantities directly comparable,

we denote OS = OSt , t = 1, ..., T (OL = OLt , t = 1, ..., T ) what we call the average market

optimism on the small (large) price market. OSt is defined by:

OSt =
PSt − V S

t−1

V S
t−1

(1)

and OLt is defined in the same way.
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Table 1
Composition of portfolios

Panel A: Portfolio composition

P1 P2 P3 P4 P5 P6

Number of stocks 3 6 9 3 6 9

Amount of cash 82 64 46 984 768 552

Panel B: Time series of cash-flows

Periods 1 2 3 4 5 6 7 8 9 10

Small price market 0.6 0.3 0.6 0.9 0.6 1.2 0.9 0.3 0.0 0.6

Large price market 10.8 7.2 7.2 7.2 7.2 14.4 10.8 0.0 3.6 3.6

The first (second) line of Panel A gives the quantities of stocks (cash) in portfolios. Portfolios P1 to P3 (P4 to P6)

correspond to the small (large) price market. Quantities are determined to have a theoretical portfolio value in the

large price market equal to 12 times the theoretical portfolio value in the small price market. The first (second) line

of Panel B gives the sequence of cash-flows in the small (large) price market. The sequence of cash flows in the large

price market is 12 times the sequence of cash flows in the small price market. A permutation has, however, been

used to avoid that subjects recognize the sequence.

The cash-flow process and the way it is revealed over time implies that, in a world of

rational traders, trades should be justified at the beginning of the market by differences in

risk aversion. The more risk averse subjects should sell their stocks to the less risk averse.

Trade prices should be lower than the fundamental value of the stock. Prices above the

fundamental value can only occur if some subjects are risk lovers. In all cases, there is

no reason to observe significant differences in optimism measures on the two markets with

the same traders.

Over 8 sessions lasting 10 periods, there are 160 measures of optimism, 80 for small

price markets and 80 for large price markets. Figure 1 reports the optimism measures for

the SL (Panel A) and LS sequences Panel B). In panel A, the blue (yellow) bars show the

average of OSt (OLt ) over the first (second) market of the four SL sessions. Conversely,

in panel B, the blue (yellow) bars show the average of OSt (OLt ) over the second (first)

market of the four LS sessions. We find that subjects exhibit greater optimism in small

price markets compared to large price markets. This results is particularly striking for the

SL sequence. The measures of optimism are, however, different, depending on the position

of the market in the SL or the LS sequence. In particular, there is a restart effect at the

beginning of the second market. When the first market is a small price market, it is likely

that one or several trades in the first periods of the second market are realized at a small

price. It happens if one (or several) subject does not pay sufficient attention to the change

of the cash-flow process. It also happens the other way around when the first market is a
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Figure 1
Optimism in sequential markets
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Panel A: Small price market followed by large price market (SL sequences)

Small price markets
Large price markets
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Panel B: Large price market followed by small price market (LS sequences)

Small price markets
Large price markets

large price market. Some trades in the first periods of the second (small price) market are

likely to occur at a large price. In the two situations, the apparent differential optimism

between the two price magnitudes is in favor of the small price case.

The cleanest data to compare the optimism measures in the two types of market come

from the first of the two sequential markets SL and LS. Figure 1 shows the detailed results

of the first market of the 8 sessions. The blue (yellow) bars show the average of OSt (OLt )

over the four SL (LS) sessions. The average optimism in SL sessions is approximately 20%.

It is stable over time and the premium with respect to the fundamental value remains (on

average) until the end of the market. It should be noted, however, that some “irrational”

prices were observed in the last periods. A trade price is said irrational when it is above

(below) the maximum (minimum) possible final payoff. For example, if the sum of the

first 8 realized cash-flows is 5.1, the maximum cumulated cash-flow until the end of the

market is 5.1 + 2.4 = 7.5 because of the cash-flow distribution given in Table 1. The story

is different for large price markets. The shape of the bar chart is more conventional. The

bubble develops over the first half of the market and decreases in the second half to become

negligible in the end.
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Table 2 shows the statistical comparison of optimism variables. Panel A provides the

test corresponding to the data in Table 2. Panel B compares optimism in SL sessions. The

line “Small prices” gives the median value of optimism calculated with the aggregate set

of small prices in the four SL sessions. The line “Large prices” gives the same information

for large prices (occurring in second markets). The difference appearing in the third line

is always positive and highly significant. The restart effect referred to above appears in

the first period of the second market. The median large price is 30% lower than the

fundamental value. Even beyond the first periods the difference remains significant and

no bubble is observed in the second market with large prices. Panel C shows the restart

effect mainly in periods 1 and 2 where the optimism in small prices is 67% and 35%

respectively. An interesting observation is the overreaction in the following periods. In

particular, the second half of the small price market shows large negative optimism (or

excessive pessimism).

Figure 2
Aggregate optimism in first markets
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Dehaene, Stanislas, Véronique Izard, Elizabeth Spelke, and Pierre Pica, 2008, Log or

linear? Distinct intuitions of the number scale in Western and Amazonian indigene

cultures, Science 320, 1217–1220.

Fischbacher, Urs, 2007, z-Tree: Zurich toolbox for ready-made economic experiments,

Experimental Economics 10, 171–178.

Green, Clifton T., and Byoung-Hyuon Hwang, 2009, Price-based return comovement, Jour-

nal of Financial Economics 93, 37–50.

Hyde, Daniel C., and Elizabeth S. Spelke, 2009, All numbers are not equal: an electrophys-

iological investigation of small and large number representations, Journal of Cognitive

Neuroscience 21, 1039–1053.

Nieder, Andreas, 2005, Counting on neurons: The neurobiology of numerical competence,

Nature Reviews 6, 177–190.

Roger, Patrick, Tristan Roger, and Alain Schatt, 2016, Behavioral Biases in Number Pro-

cessing: The Case of Analysts’ Target Prices, Conference paper Helsinki Finance Sum-

mit.

Schultz, Paul, 2000, Stock Splits, Tick Size, and Sponsorship, Journal of Finance 55,

429–450.

Smith, Vernon L., Gerry L. Suchanek, and Arlington W. Williams, 1988, Bubbles, Crashes,

and Endogenous Expectations in Experimental Spot Asset Markets, Econometrica 56,

1119–1151.

Viarouge, Arnaud, Edward. M. Hubbard, Stanislas Dehaene, and Jérôme Sackur, 2010,
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4 Appendix

There are 9 traders in each session. Traders are initially endowed with a portfolio of stocks

and an amount of experimental money. Each trader i is given a portfolio θi,0 = (θ0
i,0, θ

1
i,0),

where the superscript 0 identifies the cash endowment (risk-free asset with zero interest

rate) and the superscript 1 identifies the risky asset (the stock). θ1
i,0 is the number of units

of stock subject i starts with.

The main purpose of the cash-flow process of the risky asset we choose is to keep the

magnitude of prices stable during a given market. It is the reason why the risky asset

does not pay any dividend before the end of the market. The unique payoff is realized

at date T = 10 and only the final holders of the stock receive the sum of the cash-flows

accumulated since the beginning of the market. Therefore, holding the stock gives the right

to receive the cumulated (since date 1) cash-flows at the terminal date. It is equivalent to a

firm that pays no dividend and is liquidated at date T = 10. The mathematical definition

of the stock is a stochastic process of i.i.d. random cash-flows CF = (CFt, t = 1, ..., T ).

Typically, the realization of the random cash-flow CFt is drawn (and publicly released)

at the end of each period t. CFt is drawn in a set of 5 equally likely values. The realization

is denoted cft. µ and σ are the expectation and the standard deviation of CFt, respec-

tively. The i.i.d. assumption implies that µ and σ do not depend on t. If EQ denotes

the expectation operator under a risk-neutral probability Q, the date-0 theoretical price

(fundamental value) of the stock is equal to the sum of the expected future cash-flows

V0 =

T∑
t=1

EQ(CFt) = Tµ (2)

The fact that cumulated cash-flows are paid at the end of the market means that,

at any date, buying (selling) the stock is equivalent to acquiring (selling) the complete

sequence of T cash-flows. The information about cash-flows is progressively revealed to

the traders. At each date t, traders observe a realization cft of the date-t random cash-flow

CFt. The fundamental value at the beginning of period t is therefore equal to

Vt =
t−1∑
s=1

cfs +
T∑
u=t

EQ(CFu) (3)

In our model, the variations of the fundamental value between two dates t − 1 and

10



t come from the partial resolution of uncertainty at the end of period t − 1 when the

date-t − 1 cash-flow is revealed. In such a framework, the process of the fundamental

value V = Vt, t = 0, ..., T is a martingale with respect to the information generated by the

cash-flow process (It denotes the information available at date t).

Vt = EQ(Vt+1 |It) (4)

It turns out that, seen from date 0, the fundamental value has a constant expectation

(by the law of iterated expectations). During a market, the conditional expectation of

a future fundamental value can be higher or lower than the initial value, depending on

the past (and thus already known) sequence of cash-flows. As an example, consider the

random return on the risky asset over period t if traders are rational and risk-neutral. If

we denote rt this return, equation 3 implies

rt =
Vt+1 − Vt

Vt
=
cft − EQ(CFt)

Vt
(5)

Equation 5 shows that the one-period expected return EQ(rt |It) is zero, but the con-

ditional variance of the one-period return is not constant over time. In fact, VQ(rt |It) =
VQ(CFt+1)

St
= σ2

V 2
t

. As a consequence, the variance of the one-period return is lower after a

sequence of high cash-flows which increase the stock price, and higher after a sequence of

low cash-flows which decrease the stock price.

The i.i.d. assumption implies that the variance of the terminal payoff of the stock,

VT =
∑T

t=1CFt is equal to T ×σ2. Combined with equation 2, this remark shows that the

variance of the gross return ST
S0

over the entire period is equal to

V arQ(
VT
V0

) =
V arQ(ST )

V 2
0

=
Tσ2

T 2µ2
=

1

T

σ2

µ2
(6)

It appears counter intuitive that the variance of returns decreases with maturity. How-

ever, the average price increases linearly with maturity, being given a per period cash-flow

probability distribution. This result should not be misinterpreted. It does not mean that

the variance of returns increases as time passes. The reason is simple. At date t, the

variance of the gross return until date T is written
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V arQ(
VT
Vt
|It) =

V arQ(VT |It)
V 2
t

=
(T − t)σ2

(
∑t

t=1 cft + (T − t)µ)2
(7)

This quantity is decreasing when t increases most of the time. In fact, when the date-t

cash-flow is greater or equal to µ, the denominator of the right hand side of equation 7

increases between t− 1 and t. Simultaneously the numerator decreases. However, it may

happen that this conditional variance increases between two dates when the realized cash-

flow is very low. In this situation, the denominator can decrease more than the numerator

(which always decreases by σ2). This special case can occur in the first periods, when the

amount of cash-flows already paid is low.

To sum up, everything else equal, the variance of the global return decreases as the

maturity of the stock increases1 but, being given a maturity date, the conditional variance

of returns decreases as time passes.

1This phenomenon is called time-diversification by finance professionals.
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